Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Vyjádření Množství informace a Číselné soustavy
Zpracováno pro předmět ICT Střední škola technická Opava
2
Jednotka informace b i t B y t e
1b (bit = binary digit) – nabývá pouze hodnoty 0 nebo 1 1 = přítomnost el. náboje, +5 V 0 = absence el. náboje, 0 V Osmice bitů (skupina osmi bitů) Zkratka je B
4
Násobky bytů Kilo k, K 1 kB Mega M 1 MB Giga G 1 GB Tera T 1 TB
Předpona Značka Zápis Mocnina (B) Převod (B) Kilo k, K 1 kB 210 B 1024 B Mega M 1 MB 220 B B Giga G 1 GB 230 B B Tera T 1 TB 240 B B
5
Jak převádět … Správně . 0,73 x 1000 = 730 g
Máme 0,73 kg salámu. Kolik je to gramů ? Správně . 0,73 x 1000 = 730 g
6
Jak převádět … kW: 321x1000 W: 321x1000x1000
Výkon elektrárny je 321 MW. Kolik je to kW a kolik watů ? kW: 321x1000 W: 321x1000x1000
7
Jak převádět … Menší jednotky na větší převádíme dělením, např g : 1000 = 0,538 kg Nebo 1987 W : 1000 = 1,987 kW 1,987 kW : 1000 = 0, MW
8
Jak převádět u Bytů a bitů …
U Bytů a bitů je postup převodu na KB, MB atd. stejný jako v předchozích ukázkách jen se nenásobí a nedělí 1000, ale !!!
9
Jak převádět … Soubor zabírá na disku prostor 0,75 kB. Kolik je to bytů ? 0,75x1024 = 768 B
10
Jak převádět … Operační paměť je 2 GB. Kolik je to KB ?
2x1024 = 2048 (MB) x 1024 = (KB)
11
Pár příkladů: Kolik B je 0,25 MB ? Kolik TB je 512 GB ?
1. Kolik B je 0,25 MB ? 2. Kolik TB je 512 GB ? 3. Je to pravda? B = 0,5 MB 1. B 2. 0,5 TB 3. Ano
12
Číselné soustavy Člověk vyjadřuje různá čísla pomocí znaků - číslic. Číslic není ovšem neomezený počet. Proto se větší čísla vyjadřují pomocí jejich vhodných kombinací. Množina užívaných číslic a předpis pro vytváření čísel větších tvoří číselnou soustavu.Počet číslic v soustavě pak tvoří základ číselné soustavy.
13
Příklady číselných soustav
Desítková Základ 10 Dvojková Základ 2 0 1 Šestnáctková Základ 16 A B C D E F
14
Desítková soustava Desítková soustava (dekadická) Vznikla zřejmě podle počtu prstů na lidských rukou a to přibližně v době paleolitu. Tuto soustavu v dnešní době používáme praktiky neustále. Desítková číselná soustava je tvořena deseti číslicemi od 0 po 9. Způsob zápisů čísel větších než 9 je dostatečně znám Základ desítkové soustavy je tedy 10.
15
Desítková soustava V desítkové soustavě se jakékoli číslo tvoří jako součet mocnin deseti vynásobených jednoduchými součiniteli, a které nabývají hodnot V desítkové soustavě lze číslo rozložit podle základu následovně: = 6x x x x x100 Kde číslo 10 je základ a mocnina základu je u prvního čísla počet číslic - 1. Tato mocnina se dále snižuje postupně o 1, až poslední mocnina = 0.
16
Dvojková (binární) soustava
Započala se rozvíjet koncem 19.století s vývojem logiky. Začátkem 20. století vytvořil pan Boole základní poučky pro práci s touto soustavou. Začala se prakticky využívat až při vývoji počítačů. Informace, které číslicové počítače zpracovávají, musí být kódované. Z tohoto hlediska jsou zatím stále nejvhodnější prvky se dvěma jednoznačné rozlišitelnými stavy. To představuje využití dvojkové číselné soustavy, která je dominující soustavou strojového zpracováni informací.
17
Dvojková (binární) soustava
Dvojková číslice (0 nebo 1) je bit (elementární informace). Znaky (alfabetické a numerické) se vyjadřuji většinou osmibitovou skupinou . Pro tyto několikabitové skupiny se používá termín slabika nebo byte. Nejbližší větší skupina s pevně stanoveným počtem bitů je slovo. Délka slov bývá většinou 4 slabiky, tj. 32 bitů.
18
Dvojková (binární) soustava
Běžný postup při práci s počítačem je takový, že uživatel zadává čísla v soustavě desítkové, počítač je kóduje do soustavy dvojkové, provede výpočet, zakóduje zpět do soustavy desítkové a vrací uživateli. číslo v soustavě desítkové číslo v soustavě dvojkové 1 2 10 3 11 4 100 9 1001
19
Dvojková (binární) soustava
Výpočty ve dvojkové soustavě mají svá pravidla: Zápis čísla 100 (v desítkové soustavě) a ve dvojkové soustavě (různé varianty): 10010 = (100)10 = ( )2 100des = dvojk 0 + 0 = 1 1 + 1 10 0 * 0 0 * 1 1 * 0 1 * 1
20
Příklady zápisu čísel v různých číselných soustavách:
Desítkové číslo Binární číslo Šestnáctkové číslo (6)10 (110)2 (6)16 (250)10 ( )2 (FA)16 (10000)10 ( )2 (2710)16 (50000)10 ( )2 (C350)16
21
Převod z dvojkové soustavy do desítkové
Mocniny dvou 20 = 1 24 = 16 28 = 256 21 = 2 25 = 32 29 = 512 22 = 4 26 = 64 210 = 1024 23 = 8 27 = 128 211 = 2048
22
Převod z dvojkové soustavy do desítkové
Pravidlo: každé číslo (nyní z ) postupně násobíte číslem 2n (kde n je na začátku počet číslic - 1 a postupně od něho odečítáme jedničku, až k nule) a sčítáte dohromady.
23
Převod z dvojkové soustavy do desítkové
Převeďte číslo z dvojkové soustavy do desítkové soustavy. 1·26 + 1·25 + 1·24 + 1·23 + 0·22 + 0· ·20 = = 120 = 12010 Počet číslic je 7 mínus 1 = 6 26 25 24 23 22 21 20
24
Převod z dvojkové soustavy do desítkové
Příklad 2 (alternativní způsob zápisu) Převeďte číslo z dvojkové soustavy do desítkové soustavy. 1 * 27 + 26 25 24 23 22 21 20 = 1*128 1*64 0*32 1*16 0*8 1*4 0*2 1*1 = = 213
25
Převod z dvojkové soustavy do desítkové
Příklad 4 Převeďte číslo ( )2 do desítkové soustavy. 1*28+ 0*27+ 0*26+ 0*25+ 1*24+1*23+ 1*22+ 1*21+ 1*20 = 287
26
Samostatné příklady Převeďte samostatně následující čísla do dvojkové soustavy: zadání 10012 výsledek 910 3810 7510 50510 152910
27
Převod z desítkové soustavy do dvojkové
Pravidla převádění z desítkové soustavy do dvojkové a šestnáctkové (ale i jakékoliv jiné soustavy): dělíme celé dekadické číslo novým základem zbytek se stává nejnižším řádem nového čísla dělíme výsledek předchozího dělení novým základem zbytek je následující číslicí nového čísla opakujme předposlední dva body, dokud neobdržíme nulový výsledek
28
Příklad 1 Převeďte číslo 120 z desítkové do dvojkové ( binární) soustavy. Pravidlo: číslo, které chceme převést, dělíme neustále dvojkou, až dojdeme k nule, přičemž si zapisujeme zbytky po celočíselném dělení. (pokud chceme převést číslo do jiné soustavy, například do šestnáctkové, budeme dělit šestnáctkou - pokud do šestkové, dělíme šestkou atd. )
29
Příklad 1 Takže v praxi to bude vypadat pro číslo 120 takto:
120 : 2 = › 0 (zbytek) 60 : 2 = › 0 30 : 2 = › 0 15 : 2 = › 1 7 : 2 = › 1 3 : 2 = › 1 1 : 2 = › 1 Výsledkem jsou právě ty zbytky, ale pozor na to, je tady drobná zrada, musíte brát zbytky od spodu. Výsledek bude číslo (ne ).
30
Příklad 2 Převeďte číslo 213 z desítkové do dvojkové soustavy (jiný způsob zápisu) zbytek 213 : 2 = 106 1 106 : 2 53 53 : 2 26 26 : 2 13 13 : 2 6 6 : 2 3 3 : 2 1 : 2 21310 =
31
Příklad 3 Převeďte číslo 257 z desítkové do dvojkové soustavy 257 : 2 = 128 zb. 1 8 : 2 = 4 zb. 0 128 : 2 = 64 zb. 0 4 : 2 = 2 zb. 0 64 : 2 = 32 zb. 0 2 : 2 = 1 zb. 0 32 : 2 = 16 zb. 0 1 : 2 = 0 zb. 1 16 : 2 = zb. 0 1000
32
Samostatné příklady zadání 710 5710 28210 136510 6239310 výsledek 1112
Převeďte samostatně následující čísla do dvojkové soustavy: zadání 710 5710 28210 136510 výsledek 1112
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.