Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Účinník a jeho kompenzácia Základné definície a vzťahy
Činný 1-fázový výkon neharmonického prúdu a napätia Jalový 1-fázový výkon Zdanlivý 1-fázový výkon Deformačný výkon
2
Skutočný účinník (power factor)
Účinník a jeho kompenzácia Skutočný účinník (power factor) Vzťah medzi rôznymi druhmi výkonov Činiteľ deformácie I1 Efektívna hodnota neharmonického prúdu
3
Následky zhoršeného účinníka:
Účinník a jeho kompenzácia Následky zhoršeného účinníka: zmenšenie využitia elektrického zariadenia, zväčšenie investičných nákladov na el. zariadenie, zväčšenie tepelných strát v elektrickom zariadení, zväčšenie úbytkov napätia v sieti, zhoršenie skratových pomerov v sieti, zhoršenie vypínacích podmienok vypínačov. cos 0,9 0,8 0,7 Spotrebiče spôsobujúce zhoršenie účinníka elektromotory: 70 – 80 % jalového odberu, transformátory: 15 – 20 %, hlavne nezaťažené, elektrické siete a iné zariadenia len nepatrne. pomerné zaťaženie motora Závislosť účinníka AM od jeho zaťaženia
4
Spôsoby zlepšovania účinníka
Účinník a jeho kompenzácia Prirážky: 1,12 – 100 % podľa hodnoty cos pre odberateľov VN a VVN cos 0,94 0,93 0,92 ... 0,64 < 0,5 prirážka (%) 1,12 2,26 3,43 50,99 100 % Odber kapacitného charakteru: 39,5007 €/(Mvar·h) Spôsoby zlepšovania účinníka vhodný výber motorov, inštalovaný výkon transformátorov prispôsobiť potrebám, kompenzácia účinníka. Spôsoby kompenzácie posudzujeme podľa: radenia kompenzačných zariadení, umiestnenia kompenzačného zariadenia, druhu kompenzačného zariadenia. Spôsoby zlepšovania účinníka podľa radenia kompenzačných zariadení: sériová (pozdĺžna) kompenzácia, paralelná kompenzácia.
5
Sériová (pozdĺžna) kompenzácia
Účinník a jeho kompenzácia Sériová (pozdĺžna) kompenzácia
6
Zvýšenie napätia na konci vedenia:
Účinník a jeho kompenzácia Zvýšenie napätia na konci vedenia: Kapacita sériového kondenzátora s výkonom Kompenzačný pomer Výsledná reaktancia vedenia je induktívna pre k < 1, kapacitná pre k > 1, nulová pre k = 1. Pre VVN vedenia k = 0,5, a l·k. Stabilita vedenia je x väčšia, prirodzený výkon x je väčší. Nevýhody: iné napätie na svorkách spotrebiča a siete (môže byť väčšie), môže dôjsť k sériovej rezonancii, nárast skratových prúdov.
7
Fázorový diagram výkonov bez a s kompenzáciou
Účinník a jeho kompenzácia Paralelná kompenzácia Princíp paralelnej kompenzácie Požadovaný kompenzačný výkon QK: QK = P( tg tgK) Pre jednofázový spotrebič: Pre trojfázový spotrebič pri zapojení do hviezdy a do trojuholníka Fázorový diagram výkonov bez a s kompenzáciou
8
Účinník a jeho kompenzácia 8
Schéma a) bez kompenzácie b) s paralelnou kompenzáciou I' = I + IC = IČ j(Ij IC) Fázorový diagram bez paralelnej kompenzácie s paralelnou kompenzáciou
9
Účinník a jeho kompenzácia 9
Spôsoby kompenzácie účinníka podľa umiestnenia kompenzačného prostriedku kompenzácia individuálna, skupinová, centrálna.
10
Druhy kompenzačných zariadení
Účinník a jeho kompenzácia Druhy kompenzačných zariadení a) statické: kondenzátor, kompenzačná tlmivka, statický riadený kompenzátor – SVC Statický kompenzátor jalového výkonu a) s fázovo riadeným meničom, b) s napäťovým striedačom b) rotačné: synchrónny kompenzátor – nezaťažený synchrónny motor, generátor elektrárne v normálnej prevádzke, generátor elektrárne v kompenzačnej prevádzke.
11
Kompenzačné zariadenia kondenzátorové statické
Účinník a jeho kompenzácia Kompenzačné zariadenia kondenzátorové statické nechránené kompenzačné zariadenia – prostý kondenzátor, najrozšírenejšia skupina, chránené kompenzačné zariadenie, filtračno-kompenzačné zariadenie (FKZ), – obidva pozostávajú zo sériového rezonančného obvodu. Frekvenčná charakteristika kompenzačného kondenzátora f (Hz) XC (ohm)
12
Kompenzačné zariadenie ako prvok el. siete
Účinník a jeho kompenzácia Kompenzačné zariadenie ako prvok el. siete P1 C k LT P2 VVN, VN T LT VN, NN P1 – hlavná prípojnica P2 L T C k Paralelný rezonančný obvod C k Q C vývody Centrálna (skupinová) kompenzácia Sériový rezonančný obvod Záver: nechránená kompenzácia ako prvok siete v každom prípade rezonančné obvody vytvára
13
Aké hodnoty nadobúda frez ???
Účinník a jeho kompenzácia Thompsonov vzťah pre rezonančnú frekvenciu P1 C k LT P2 L T C k frez f Z frez f Z Sériový rezonančný obvod Paralelný rezonančný obvod Aké hodnoty nadobúda frez ???
14
Účinník a jeho kompenzácia 14
ST = 40 MV·A, uk = 11 %, QK = 10 Mvar, – hodnoty sú vztiahnuté na 6 kV a zodpovedajú bežnej prevádzkovej praxi 500 1000 1500 2000 2500 10 -1 10 0 10 1 10 2 frekvencia (Hz) impedancia Z (ohm) P2 L T C k Frekvenčná charakteristika usporiadania transformátor – centrálna kompenzácia
15
Signál HDO v elektrickej sieti
Účinník a jeho kompenzácia Signál HDO v elektrickej sieti " k3 S C k Q vývody P1 – hlavná prípojnica P2 VVN, VN T VN, NN LT Signál HDO – napäťový zdroj (4 %, fHDO = 216,66 Hz) – obyčajne na úrovni VVN, VN P2 P2 C k LT IHDO UHDO UL UC ULC Signál HDO v sieti priemyslového podniku – signál HDO bude „odsávaný“ kompenzačným zariadením podniku
16
Účinník a jeho kompenzácia 16
Praktické dôsledky nežiaducej interakcie signálu HDO a nechránených kompenzačných zariadení sú: preťaženie vysielača HDO, zníženie úrovne signálu HDO v napájacom bode VVN, VN – P2, vysoká úroveň signálu HDO na hlavnej prípojnici – P1, preťažovanie kompenzačného zariadenia a znižovanie jeho životnosti, blikanie, spôsobené superpozíciou signálu HDO so sieťovým napätím. Zhodnotenie vhodnosti nasadenia nechráneného KZ v takejto oblasti individuálne, je potrebné vykonať dôslednú analýzu konkrétnej siete.
17
Harmonické v elektrickej sieti
Účinník a jeho kompenzácia Harmonické v elektrickej sieti Harmonické – prúdový zdroj – obyčajne na úrovni VN, NN na P1 " k3 S C k Q vývody P2 VVN, VN VN, NN P1 Uh T LT Ih Uh LT P1 Ck Ih Pripojenie zdroja harmonických k paralelnému obvodu
18
Frekvenčná charakteristika paralelného rezonančného obvodu
Účinník a jeho kompenzácia 500 1000 1500 2000 2500 10 -1 10 0 10 1 10 2 frekvencia (Hz) impedancia Zh (ohm) ST = 40 MV·A, uk = 11 % QK = 10 Mvar, hodnoty sú vztiahnuté na 6 kV a zodpovedajú bežnej prevádzkovej praxi Frekvenčná charakteristika paralelného rezonančného obvodu
19
Účinník a jeho kompenzácia 19
10 0 10 1 10 2 10 4 frekvencia (Hz) Prúd KZ IK (A) 500 1000 1500 2000 2500 10 3 Prúd kompenzačným zariadením - ak predpokladáme Ih= 100 A. Praktické dôsledky nežiadúcej interakcie harmonických a nechránených KZ: výrazné odsávanie harmonických v blízkosti rezonančnej frekvencie, vysoká úroveň príslušnej harmonickej na hlavnej prípojnici – P1, prúdové preťažovanie kompenzačného zariadenia a znižovanie jeho životnosti. Zhodnotenie vhodnosti nasadenia nechráneného KZ v takejto oblasti vôbec sa neodporúča!!!
20
Chránené kompenzačné zariadenie Filtračno-kompenzačné zariadenie (FKZ)
Účinník a jeho kompenzácia Rezonančné filtre Chránené kompenzačné zariadenie tvorené ladeným sériovým rezonančným LC obvodom, určené pre kompenzáciu jalového výkonu, zariadenie je ladené na „neutrálnu“ frekvenciu, výkonové dimenzovanie zodpovedá požadovanej kompenzácii jalového výkonu. Filtračno-kompenzačné zariadenie (FKZ) tvorené ladeným sériovým rezonančným LC obvodom, okrem kompenzácie jalového výkonu slúži aj na filtráciu harmonických, ladenie zariadenia do blízkosti harmo-nickej, ktorú chceme zo siete odsávať, výkonové dimenzovanie zodpovedá požadovanej kompenzácii jalového výkonu + odsávanie harmonických zo siete. Z hľadiska princípu a usporiadania sú totožné. Rozdiel je v ladení KZ a výkonovom dimenzovaní.
21
Ladený rezonančný obvod
Účinník a jeho kompenzácia Ladený rezonančný obvod LF = 11,5 mH, Q = 50, QCF = 1 Mvar, ̵ hodnoty sú vztiahnuté na 6 kV a zodpovedajú bežnej prevádzkovej praxi Rezonančný filter LF CF IF UF Frekvenčná charakteristika rezonančného filtra 189 Hz 500 1000 1500 2000 2500 10 -1 10 0 10 1 10 2 frekvencia (Hz) impedancia ZF (ohm)
22
Rezonančný filter v elektrickej sieti
Účinník a jeho kompenzácia Rezonančný filter v elektrickej sieti kde Lx je náhradná indukčnosť ostatných prvkov sústavy " k3 S vývody P1 – hlavná prípojnica P2 VVN, VN T VN, NN LT L F CF akýkoľvek rezonančný obvod má frez nižšiu ako je vlastná rezonančná frekvencia filtra fFrez
23
Účinník a jeho kompenzácia 23
Thompsonov vzťah pre rezonančnú frekvenciu P2 L T C F P1 C F LT LF f Z frez fFrez f Z frez fFrez Sériový rezonančný obvod Paralelný rezonančný obvod Akýkoľvek rezonančný obvod má frez nižšiu ako je vlastná rezonančná frekvencia filtra fFrez
24
Interakcia signálu HDO s rezonančnými filtrami
Účinník a jeho kompenzácia Interakcia signálu HDO s rezonančnými filtrami " k3 S vývody P1 – hlavná prípojnica P2 VVN, VN T VN, NN LT L F CF Signál HDO – napäťový zdroj (4 %, fHDO = 216,66 Hz) – obyčajne na úrovni VVN, VN P2 P2 LT IHDO UHDO UT CF UF LF Signál HDO v sieti priemyslového podniku s rezonančným filtrom
25
Účinník a jeho kompenzácia 25
Prúd HDO (A) 100 200 Kompenzačný výkon filtra (Mvar) 5 10 15 20 25 QF 300 400 500 Odsávaný prúd HDO v závislosti od kompenzačného výkonu rezonančného filtra s fFrez = 189 Hz (do 10 % prúdu tečúceho pri f = 50 Hz) f Frez < fHDO 0,5 1,0 Kompenzačný výkon filtra (Mvar) 5 10 15 20 25 QF 1,5 2,0 2,5 uHDO (%) Percentuálna úroveň signálu HDO na P1 v závislosti od kompenzačného výkonu rezonančného filtra
26
Stav nežiadúci a neprípustný!!!
Účinník a jeho kompenzácia Prúd HDO (A) 1000 2000 Kompenzačný výkon filtra (Mvar) 5 10 15 20 QF 3000 4000 5000 6000 Odsávaný prúd HDO v závislosti od kompenzačného výkonu rezonančného filtra s fFrez = 240 Hz, (do 10 % prúdu tečúceho pri f = 50 Hz) f Frez > fHDO 100 Kompenzačný výkon filtra (Mvar) 5 10 15 20 QF 101 102 uHDO (%) 10 -1 Percentuálna úroveň signálu HDO na P1 v závislosti od kompenzačného výkonu rezonančného filtra Stav nežiadúci a neprípustný!!!
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.