Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Konstrukce trojúhelníku

Podobné prezentace


Prezentace na téma: "Konstrukce trojúhelníku"— Transkript prezentace:

1 Konstrukce trojúhelníku
Známe-li 2 strany a úhel jimi sevřený. Konstrukce podle věty sus (strana, úhel, strana).

2 Trojúhelník a jeho vlastnosti
Zopakujeme si základní vlastnosti, které nám často pomohou při pozdějších konstrukcích. Trojúhelník je rovinný geometrický útvar sestávající ze tří stran, tří vrcholů a tří vnitřních úhlů.

3 Trojúhelník - označování
Pozor při značení vrcholů a stran trojúhelníku. Strana a proti vrcholu A, strana b proti vrcholu B, strana c proti vrcholu C. Popis vrcholů začínáme obvykle v levém dolním rohu, ale vždy popisujeme vrcholy ve směru proti pohybu hodinových ručiček.

4 Trojúhelník – součet vnitřních úhlů
Součet vnitřních úhlů trojúhelníku je vždy 180°. 37° 73° 70° ____ 180°

5 Konstrukce trojúhelníku
Z jakých částí se skládá naše činnost prováděná před, během a po konstrukci? 1. Je dobré zjistit, pokud to jde už ze zadání konstrukce, zda trojúhelník lze vůbec sestrojit, abychom zbytečně neztráceli čas. Jak? Např. pomocí trojúhelníkové nerovnosti, velikosti úhlů apod. 2. Načrtnout si obrázek, v němž si vyznačíme zadané údaje. Udělat si náčrt konstruované situace. 3. Rozebrat si postup, podle kterého budeme trojúhelník rýsovat. To zna mená určit si, které znalosti nám při konstrukci trojúhelníku pomohou a jak. Např. vlastnosti trojúhelníku a jiných známých geometrických útvarů nebo množiny bodů dané vlastnosti. 4. Zapsat postup konstrukce, stanovený na základě provedeného rozboru. 5. Podle zapsaného postupu uskutečnit konstrukci a narýsovat zadaný trojúhelník. 6. Zapsat počet všech možných řešení zadané úlohy.

6 A nyní již přikročíme ke konstrukci.
Př.: Sestrojte trojúhelník ABC, ve kterém  = 40°, b = 7 cm, c = 8 cm. První krok konstrukce, tj. určení, zda lze trojúhelník o zadaných hodnotách vůbec sestrojit, spočívá v tomto případě v ověření, že zadaný úhel je menší než součet všech tří vnitřních úhlů trojúhelníku, tzn. 180°. Náčrt: b = 7 cm  = 40° c = 8 cm

7 Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. K tomu, abychom sestrojili trojúhelník, potřebujeme mít zadány 3 údaje. Tak, jak je tomu v našem případě, kdy známe dvě strany a úhel jimi sevřený. Tyto tři zadané údaje se pak zpravidla využívají v prvních třech krocích postupu konstrukce. Čím při rýsování začneme? Při konstrukcích trojúhelníků začínáme většinou (je-li zadána) stranou, a to dolní vodorovně umístěnou stranou. b = 7 cm  = 40° c = 8 cm

8 Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. Dále budeme hledat bod C. Co o něm víme? Víme, že leží na rameni úhlu  o velikosti 40°. Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech takových bodů? Je to polopřímka AY, tj. rameno úhlu  = 40°. Y C1 C2 C3 C4 C5  = 40° A c = 8 cm

9 Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. Co ještě víme o bodu C? Jakou druhou podmínku musí ještě splňovat? Víme, že jeho vzdálenost od bodu A je 7 cm (b = 7 cm). Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech bodů, jejichž vzdálenost od bodu A je 7 cm? Je to kružnice k se středem v bodě A a poloměrem o velikosti b, tj. 7 cm. C2 Y C1 C3 b = 7 cm C4 C5  = 40° A c = 8 cm k

10 Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém =40°, b=7 cm, c=8 cm. Kde se tedy nachází vrchol C trojúhelníku? Leží v průsečíku polopřímky AY a kružnice k, tzn.množiny všech bodů, které leží na rameni úhlu  o velikosti 40°, a množiny bodů, které mají od bodu A vzdálenost danou stranou b, tj. 7 cm (kružnice k). Jako 2. a 3. krok konstrukce tedy narýsujeme výše uváděnou polopřímku a kružnici. Y C Zapisujeme: C  AY  k  = 40° A c = 8 cm k

11 Postup a konstrukce: 1. AB; AB = c = 8 cm 4. C; C  AY  k
2. ;  = YAB = 40°; AY 5. Trojúhelník ABC 3. k; k(A; b = 7 cm)‏ k C Y p A B

12 Výsledný trojúhelník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem C)‏ Konstrukci proměříme, zda odpovídá zadání, a trojúhelník vytáhneme silněji. A takto vypadá celá konstrukce.

13 Pár příkladů k procvičení – příklad č. 1
Sestrojte trojúhelník ABC, jestliže: b = 65 mm, c = 4 cm,  = 120° (Pozor na jednotky!)‏

14 Pár příkladů k procvičení – příklad č. 2
Sestrojte trojúhelník ABC, jestliže: a = 7 cm,  = 75°, c = 5 cm

15 Pár příkladů k procvičení – příklad č. 3
Sestrojte trojúhelník OPQ, jestliže: o = 4 cm, |OPQ| = 100°, q = 7 cm

16 Konstrukce trojúhelníku podle věty sus.
Otevřete si na závěr ještě následující odkaz. Můžete myší měnit polohu bodů A, B, poloměr kružnice k1 (velikost strany) a sklon polopřímky AX (velikost úhlu) na uvedené konstrukci. Zkoumejte, jak se provedené změny projeví na vznikajících trojúhelnících.

17 Tak přesnou ruku při rýsování!


Stáhnout ppt "Konstrukce trojúhelníku"

Podobné prezentace


Reklamy Google