Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Metody zpracování fyzikálních měření - 1

Podobné prezentace


Prezentace na téma: "Metody zpracování fyzikálních měření - 1"— Transkript prezentace:

1 Metody zpracování fyzikálních měření - 1
EVF 112 ZS 2007/2008 L.Přech

2 Počítačový sběr experimentálních dat I - osnova
Fyzikální experiment a úloha počítače v něm Základní schéma počítačem řízeného experimentu Analogové a digitální zpracování dat Čidla a akční členy Úprava analogového a číslicového signálu, synchronní detekce

3 Model fyzikálního experimentu
Stanovujeme závislost veličiny y na veličině x při daném parametru  (např. závislost proudu vzorkem na napětí při určité teplotě) Obvykle opakovaná měření pro diskrétní hodnoty xi j , určování střední hodnoty a odhad chyby x,  nastavované nebo implicitně závislé na čase x(t) (t)

4 Počítač jako automatické registrační zařízení
Ruční nastavení x,  resp. x(t) (t) Automatický zápis hodnot (t) y(t) Vyhodnocení a zpracování často až po ukončení zápisu Využíváme rychlost registračního systému!

5 Počítačově řízený experiment
Automatické nastavení x,  resp. x(t) (t) volně dle programu – automatické měření s cílem stabilizovat nebo řídit y nebo  - regulace Automatický zápis hodnot (t) y(t) Vyhodnocení a zpracování obvykle během měření

6 Základní schéma systému sběru dat a řízení experimentu
Fyzikální veličiny Akční členy Sběr dat, řízení výstupů Úprava signálů Počítač Čidla

7 Fyzikální veličiny Elektrické povahy
napětí proud odpor, vodivost, indukčnost, kapacita kmitočet, fáze perioda, střída impulzy, události Spojité nebo diskrétní (v hodnotě nebo čase) Neelektrické teplota poloha a pohyb, zrychlení vlhkost, tlak osvětlení hmotnost chemické složení …. Veličina vyjádřena časovým průběhem signálu - elektrické veličiny

8 Převod elektrických veličin na neelektrické a zpět
Akční členy topné elementy zdroje světla ventily motory elmg. cívky …. Čidla termočlánky, termistory fotodiody průtokoměry, vakuometry snímače polohy a pohybu, tenzometry a akcelerometry Hallovy sondy vlhkoměry detektory částic ....

9 Spojitý vs. digitální svět - číslicový počítač – pracuje s diskrétní informací
Digitální signály Přímé měření/řízení digitální vstupy/výstupy (logické signály) čas – frekvence, perioda, délka pulsu, střída signálu, fáze Analogové signály Přímé, převod A/D a D/A napětí (proud) Nepřímé – mezipřevod na časové veličiny nebo napětí/proud často pro ostatní elektrické veličiny: odpor/vodivost, kapacita, indukčnost

10 Rozdělení převodníků neelektrických veličin
Přímý převod energie neelektrické veličiny – vlastní zdroj elektromotorické síly elektromagnetické, termoelektrické, fotoelektrické, piezoelektrické, Hallův jev, … Pasivní převodníky – potřebují vnější elektrický zdroj využívají závislost elektrické vlastnosti čidla na měřené veličině – magnetorezistivita, elektrický odpor na teplotě, indučnost na poloze jádra, … Zpětnovazební pasivní převodníky – zpětná vazba udržuje rovnováhu mezi měřenou veličinou a protipůsobícím elektrickým signálem

11 Příklad - termočlánek Přímý převod energie termoelektrická napětí
Rozsah voltmetru Přímý převod energie termoelektrická napětí Uo = U1(Tref)+ U2 (T) – U3(Tref) Citlivost 7 – 50 V/°C Zesílení vst. zesilovače Rozlišení v bitech U1 T známe Uo U2 U3 Tref

12 Příklad - pasivní převodníky
Převodník polohy (úhlu): Posuv jezdce -> proměnný odpor -> napětí Drátkový termoanemometr: Rychlost proudění -> míra ochlazování -> teplota -> odpor -> napětí Wheatstonův můstek

13 RTD - odporové teploměry (např. Pt)
Malý odpor, typ. 100  Malá citlivost ~0.4 /°C 2-drátové měření – málo vhodné – úbytek napětí na přívodech 4-drátové zapojení – lepší, na měřicích přívodech pro napětí minimální úbytek 3-drátové zapojení – vhodné pro můstky (Wheatstonův )

14 Můstkové zapojení – RTD, tenzometry
3-drátové zapojení RTD ve Wheatstonově můstku – protilehlé větve RG1, RG2 kompenzují odpor přívodů Tenzometry v můstku – poloviční nebo úplný můstek – zvýšení citlivosti měření Použití tenzometrů: jejich odpor závisí na mechanickém napětí použití též jako převodníky jiné síly – zrychlení, tlak, vibrace

15 Příklad – čidlo se zpětnou vazbou
Drátkový termoanemometr: zpětná vazba udržuje můstek vyvážený -> stabilizace odporu (teploty) sondy (výstupní napětí)2 ~ teplo ztrácené na sondě ~ rychlost proudění

16 Další příklady LVDT (lineární napěťový diferenciální transformátor)
Měření lineárního posunu – rozdílná vazba do sekundárního vinutí L a P Čidla s interním převodem na proudovou smyčku 0-20 nebo 4-20 mA IS 20 4 X

17 Porovnání některých čidel
Čidlo Elektrické vlastnosti Požadavky na úpravu signálu termočlánek Malé výstupní napětí, nízká citlivost, nelineární výstup Referenční teplotní čidlo pro kompenzaci studeného konce, velké zesílení, linearizace odporový teploměr Malý odpor (typ. 100 ), nízká citlivost, nelineární výstup Proudové buzení, 3-, 4-drátové zapojení, linearizace integrované teplotní čidlo Vysokoúrovňový výstup (~V), linearita Zdroj napájení, malé zesílení tenzometr Malý odpor, nízká citlivost, nelineární výstup Napěťové n. proudové buzení, vysoké zesílení, můstkové zapojení, linearizace, kalibrace bočníků čidlo s proudovým výstupem Proudová smyčka (4 – 20 mA typ.) Přesný rezistor termistor Odporové čidlo, vysoký odpor a citlivost, velmi nelineární Napěťové n. prodouvé buzení s referenčním rezistorem, linearizace aktivní akcelerometr Kapacitní manometr Kapacita závislá na tlaku (malé hodnoty) Buzení střídavým proudem, můstkové zapojení nebo oscilátor LVDT Střídavé napětí Buzení střídavým proudem, demodulace, linearizace

18 Obecné funkce obvodů pro úpravu signálu
Zesílení analogových signálů Změny vst. signálu vhodně pokrývají rozsah ADC – zvětšení rozlišení, citlivosti, zvýšení poměru S/N Útlum Úprava velikosti velkých signálů (vysoké napětí...) Filtrace Snížení šumu v určité části spektra (např. 50, 60 Hz) Zabránění aliasingu (Nyquistův teorém) Izolace (optická, transformátory) Přerušení zemních smyček, snížení šumu, zabránění poškození zařízení, oddělení obvodů s nebezpečným napětím Multiplex Přepínání ADC mezi více kanály, volba způsobu připojení signálu Současné vzorkování více kanálů Buzení snímačů, můstková zapojení, 3- a 4- drátová měření Kompenzace studeného konce termočlánku

19 Další funkce – synchronní detekce
Synchronní detekce je technika zpracování signálu, která: umožňuje separovat i velmi slabý signál v silném šumu - např.: příjem signálů v radiotechnice zpracování signálu se silným rušením vyžaduje referenční signál s přesně danou frekvencí a fází budí fyzikální proces moduluje měřenou veličinu Výstupní signál Synchronní detektor - harmonický nebo obdélníkový signál

20 Úvod do synchronní detekce

21 Modulační zesilovač

22 Další funkce Komprese dynamiky signálů
Bell µ-255 Linearizace signálu (častěji sw) Úprava digitálních signálů Převod úrovní, hystereze vstupů, galvanická izolace(optická nebo transformátorová), výkonové zesílení, buzení relé a stykačů


Stáhnout ppt "Metody zpracování fyzikálních měření - 1"

Podobné prezentace


Reklamy Google