Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilBedřich Malý
1
VY_32_INOVACE_01- 10 _DOSTALOVA Zřeďovací rovnice Anotace Prezentace má za cíl seznámit žáky s využitím zřeďovací rovnice pro výpočet příkladů týkajících se ředění roztoků. Obsahuje výkladovou část a řešené vzorové příklady. Autor Mgr. Anna Dostálová Jazyk Čeština Očekávaný výstup Žák dokáže použít zřeďovací rovnici pro výpočet ředění roztoků. Speciální vzdělávací potřeby Ne Klíčová slova Hmotnostní zlomek, molární koncentrace, zřeďovací rovnice Druh učebního materiálu Prezentace Druh interaktivity Aktivita / Výklad Cílová skupina Žák Stupeň a typ vzdělávání Střední vzdělávání Typická věková skupina 16 let / 1. ročník Datum vytvoření 29. 9. 2012
2
Zřeďovací rovnice ředění = smíchání dvou (nebo více) roztoků téže látky o různé koncentraci, popř. smíchání roztoku s vodou pro výpočet používáme zřeďovací rovnici: m 1, m 2 – hmotnosti smíchaných roztoků m – hmotnost roztoku po smíchání w 1, w 2 – koncentrace smíchaných roztoků w – koncentrace roztoku po smíchání
3
Zřeďovací rovnice Poznámky: nezáleží, jestli koncentrace doplňujeme v podobě hmotnostního zlomku (desetinné číslo) nebo jako procentový údaj, ale musí to být všude stejně hmotnostní zlomek vody je roven nule hmotnostní zlomek čisté látky je roven jedné (výjimku tvoří hydráty solí)
4
Zřeďovací rovnice jsou-li zadané molární koncentrace, počítáme pomocí druhého tvaru zřeďovací rovnice: V 1, V 2 – objemy smíchaných roztoků V – objem roztoku po smíchání c 1, c 2 – koncentrace smíchaných roztoků c – koncentrace roztoku po smíchání
5
Zřeďovací rovnice Poznámky: pro objemy neplatí vztah V = V 1 + V 2, protože při smíchání roztoků dochází k objemové kontrakci; u roztoků s nízkou koncentrací ji však můžeme zanedbat a vztah použít nezáleží, jestli objemy dosazujeme v litrech nebo v mililitrech, ale musí to být všude stejně koncentrace vody je rovna nule
6
Příklad 1 Jakou koncentraci bude mít roztok HCl, který vznikl smícháním 20 g 36% roztoku a 100 g 50% roztoku? Zapíšeme zkrácené zadání: m 1. = 20 g w 1 = 36 % Dosadíme do zřeďovací rovnice a počítáme: Roztok bude mít koncentraci 47,7 %. m 2 = 100 g w 2 = 50 %w = ? m = (20 + 100) g
7
Příklad 2 Kolik ml 50% roztoku H 2 SO 4 ( = 1,40 g cm -3 ) je třeba na přípravu 100 g 10% roztoku? Zapíšeme zkrácené zadání: m 1. = ? w 1 = 50 % Dosadíme do zřeďovací rovnice a počítáme: Je potřeba 14,3 ml 50% roztoku. m 2 = ? w 2 = 0 %w = 10 % m = 100 g Ředíme vodou, která obsahuje 0 % kyseliny. Objem dopočítáme pomocí hustoty:
8
Příklad 3 Kolik g NaCl musíme přidat k 75 g jeho 2% roztoku, abychom připravili 3% roztok? Zapíšeme zkrácené zadání: m 1. = 75 g w 1 = 2 % Dosadíme do zřeďovací rovnice a počítáme: Musíme přidat 0,77 g NaCl. m 2 = ? w 2 = 100 %w = 3 % m = (75 + m 2 ) g Pevná látka je 100%.
9
Příklad 4 Jakou koncentraci bude mít roztok CuSO 4, který vznikl smícháním 200 g 7% roztoku a 10 g CuSO 4.5H 2 O? CuSO 4.5H 2 O nelze považovat za 100% látku, protože obsahuje krystalovou vodu. Nejdříve musíme proto spočítat obsah CuSO 4 v CuSO 4.5H 2 O (viz kapitola Procentové složení látek). 100 % CuSO 4.5H 2 O …..……….. 249,72 g mol -1 x % CuSO 4 ……………………….159,62 g mol -1
10
Příklad 4 Zapíšeme zkrácené zadání: m 1. = 200 g w 1 = 7 % Dosadíme do zřeďovací rovnice a počítáme: Roztok bude mít koncentraci 9,7 %. m 2 = 10 g w 2 = 63,9 %w = ? m = (200 + 10) g
11
Příklad 5 Kolik ml 0,1M roztoku a kolik ml 0,6M roztoku NaOH je třeba na přípravu 500 ml 0,5M roztoku? Zapíšeme zkrácené zadání: V 1. = ? c 1 = 0,1 mol dm -3 Dosadíme do zřeďovací rovnice a počítáme: Je potřeba 100 ml 0,1M roztoku a 400 ml 0,6M roztoku. V 2 = ? c 2 = 0,6 mol dm -3 c = 0,5 mol dm -3 V = 500 g Dopočítat V 2 : Objem V 2 vyjádříme a dosadíme do rovnice:
12
Použitá literatura: MAREČEK, Aleš; HONZA, Jaroslav. Chemie pro čtyřletá gymnázia: 1. díl. Olomouc: NAKLADATELSTVÍ OLOMOUC s. r. o., 2004, ISBN 80-7182-055-5. MAREČEK, Aleš; HONZA, Jaroslav. Chemie: Sbírka příkladů pro studenty středních škol. Brno: Proton, 2001, ISBN 80-902402-2-4. vlastní tvorba autora Molární hmotnosti prvků: RICHTERA, Lukáš. Periodický systém prvků. Brno: Vysoké učení technické v Brně, Fakulta chemická, 2009, ISBN 978-80-214-3836-1.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.