Přenos nejistoty Náhodná veličina y, která je funkcí náhodných proměnných xi: xi se řídí rozděleními pi(xi) → můžeme najít jejich střední hodnoty mi a.

Slides:



Advertisements
Podobné prezentace
kvantitativních znaků
Advertisements

4. Metoda nejmenších čtverců
Kalmanuv filtr pro zpracování signálů a navigaci
Lineární regresní analýza Úvod od problému
ZÁKLADY EKONOMETRIE 2. cvičení KLRM
3. PRINCIP MAXIMÁLNÍ VĚROHODNOSTI
Robustní vyrovnání Věra Pavlíčková, únor 2014.
Úvod do regresní analýzy
Regresní analýza a korelační analýza
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
64. Odhady úplných chyb a vah funkcí BrnoLenka Bocková.
FI-02 Fyzikální měření Hlavní body Fyzika je založena na experimentu. Plánování měření a zpracování dat. Chyby měření. Chyby.
Růstové a přírůstové funkce
CHYBY MĚŘENÍ.
Autor: Boleslav Staněk H2IGE1.  Omyly  Hrubé chyby  Chyby nevyhnutelné  Chyby náhodné  Chyby systematické Rozdělení chyb.
kvantitativních znaků
Základy ekonometrie Cvičení září 2010.
Náhodný jev A E na statistickém experimentu E - je určen vybranou množinou výsledků experimentu: výsledku experimentu lze přiřadit číslo, náhodnou proměnnou.
Statistická analýza únavových zkoušek
Regrese Aproximace metodou nejmenších čtverců
Inženýrská geodézie 2 Doporučená literatura:
Obecný lineární model Fitované hodnoty and regresní residuály
Lineární regrese.
Lineární regresní analýza
Závislost dvou kvantitativních proměnných
Jedno-indexový model a určení podílů cenných papírů v portfoliu
Ekonometrie „ … ekonometrie je kvantitativní ekonomická disciplína, která se zabývá především měřením v ekonomice na základě analýzy reálných statistických.
Odhad metodou maximální věrohodnost
Princip maximální entropie
Experimentální fyzika I. 2
Princip maximální entropie
Metrologie   Přednáška č. 5 Nejistoty měření.
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Základy ekonometrie 4EK211
Hodnoty tP pro různé pravděpodobnosti P
Hodnocení přesnosti měření a vytyčování
Jednoduchý lineární regresní model Tomáš Cahlík 2. týden
Sylabus V rámci PNV budeme řešit konkrétní úlohy a to z následujících oblastí: Nelineární úlohy Řešení nelineárních rovnic Numerická integrace Lineární.
Maximální chyba nepřímá měření hrubý, řádový odhad nejistoty měření
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
V experimentu měníme hodnotu jedné nebo několika veličin x i a studujeme závislost veličiny y. - např. měníme, ostatní x i bereme jako parametry ( , ,
Hustota pravděpodobnosti – případ dvou proměnných
Úvod do praktické fyziky Seminář pro I.ročník F J. Englich, ZS 2003/04.
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Aritmetický průměr - střední hodnota
Inferenční statistika - úvod
IV..
Aplikovaná statistika 2.
Popisné charakteristiky statistických souborů. ZS - přesné parametry (nelze je měřením zjistit) VS - výběrové charakteristiky (slouží jako odhad skutečných.
Základy zpracování geologických dat R. Čopjaková.
Experimentální metody v oboru – Přesnost měření 1/38 Naměřená veličina a její spolehlivost © Zdeněk Folta - verze
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
Interpolace funkčních závislostí
Chyby měření / nejistoty měření
Interpolace funkčních závislostí
Monte Carlo Typy MC simulací
Úvod do praktické fyziky
Induktivní statistika
Základy zpracování geologických dat Rozdělení pravděpodobnosti
Regresní analýza výsledkem regresní analýzy je matematický model vztahu mezi dvěma nebo více proměnnými snažíme se z jedné proměnné nebo lineární kombinace.
Hodnocení závislosti STAT metody pro posouzení závislosti – jiné pro:
Parciální korelace Regresní analýza
4. Metoda nejmenších čtverců
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Plánování přesnosti měření v IG Úvod – základní nástroje TCHAVP
Lineární regrese.
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Interpolace funkčních závislostí
Induktivní statistika
Princip max. věrohodnosti - odhad parametrů
Transkript prezentace:

Přenos nejistoty Náhodná veličina y, která je funkcí náhodných proměnných xi: xi se řídí rozděleními pi(xi) → můžeme najít jejich střední hodnoty mi a disperze Jak se projeví nejistoty xi na veličině y? → chceme získat odhad nejistoty veličiny y. Funkci f lze rozvinout do Taylorovy řady v okolí bodu : (nelineární členy zanedbáme)

Přenos nejistoty Očekávaná hodnota: Disperze: Jsou-li xi nezávislé:

Nejistota nepřímého měření Příklad: měření el. odporu proměnné xi: U, I - měřením U jsme získali a , z přesnosti přístroje: uU, B → - měřením I jsme získali a , z přesnosti přístroje: uI, B Očekávaná hodnota: Nejistota: Výsledek:

Shrnutí: zpracování výsledků měření veličiny y = f(x1, x2, ..., xk) 1) Zpracování pro přímo měřené veličiny. Pro každou veličinu xi: a) výpočet aritm. průměru a směrodatné odchylky b) vyloučení hrubých chyb (>„3s“) c) výpočet odhadu standardní odchylky aritm. průměru d) určení chyby měřidla Dx. (Je-li , lze Dx zanedbat a obráceně.) e) volba pravděpodobnosti P a určení korekce tP (závisí na P a počtu měření ni) - např. P~ 68 % ... standardní odchylka („s“) f) určení celkové střední chyby veličiny xi: g) zaokrouhlení a zápis 2) Výsledek pro veličinu y: a) výpočet střední hodnoty: b) výpočet celkové střední chyby: c) zaokrouhlení a zápis výsledku: (P ~ 68 %)

Interpolace funkčních závislostí V experimentu měníme hodnotu jedné nebo několika veličin xi a studujeme závislost veličiny y. - např. měníme , ostatní xi bereme jako parametry (a, b, g, ...): Chceme posoudit platnost závislosti y na xi z výsledků experimentu. → tj. chceme získat odhady parametrů např. pro N hodnot jsme naměřili N hodnot Předpokládáme, že známe funkční závislost f a že přesnost nastavení hodnot veličiny x je řádově větší, než přesnost měření závisle proměnné y (která má obecně pro každý bod jinou dispersi). ... teoretická závislost (fyzikální zákon)

Metoda nejmenších čtverců Metoda početní interpolace. Používá se pro získání odhadů parametrů : 1) Zkonstruujeme veličinu 2) Hledáme minimum c2(a,b,g,...). x 1 2 3 4 5 6 7 y 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Metoda nejmenších čtverců - lineární fit lineární fit, y = mx minimalizace c2: disperze m: problém: co když neznáme x 5 10 15 20 y -10 30 40 50 60 m = 2.48  0.03

Metoda nejmenších čtverců - lineární fit Pokud jsou neznámé, ale stejné, potom Pro neznámou disperzi pak lze spočítat odhad: ozn. - nevychýlený odhad: Odhad disperze m je tedy: ... minimální suma čtverců odchylek

Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese Interpolace a vyhlazování (spline) Regresní analýza a extrapolace Softwarové nástroje - Excel, Origin, Sigmaplot, ... - gnuplot, Octave, R, ... metoda největšího spádu Gaussova-Newtonova metoda algoritmus Levenberg–Marquardt simplex