Feistlovy kryptosystémy Posuvné registry Lucifer DES, AES Horst Feistel 1915-1990 Německo, USA IBM.

Slides:



Advertisements
Podobné prezentace
Projekt DIGIT – digitalizace výuky na ISŠTE Sokolov
Advertisements

SHA-1 Secure Hash Algorithm Martin Raichl. HASH  Hašovací funkce jsou silným nástrojem moderní kryptologie. Jsou jednou z klíčových kryptologických myšlenek.
jak to funguje ? MUDr.Zdeněk Hřib
Ing. Roman Danel, Ph.D. Institut ekonomiky a systémů řízení Hornicko – geologická fakulta.
Seznámení s asymetrickou kryptografií, díl 1.
Úvod do klasických a moderních metod šifrování Jaro 2008, 7. přednáška.
Asymetrická kryptografie
Správa webserveru Přednáška 4
Správa webserveru Přednáška 4
Radek Horáček IZI425 – Teorie kódování a šifrování
Šifrování a bezpečnost
Bc. Jan Kotlařík. Pojmy  Naslouchání  Falšování  Napodobování – podvádění, zkreslení  Šifrování a dešifrování  Detekce falšování  Autentizace 
Šifrovaná elektronická pošta Petr Hruška
PRETTY GOOD PRIVACY ŠIFROVÁNÍ ZPRÁV. JE KRYPTOGRAFICKÝ BALÍK, KTERÝ JE VYUŽÍVÁN PŘEDEVŠÍM PRO ŠIFROVÁNÍ ZPRÁV A SOUBORŮ A VYTVÁŘENÍ, OVĚŘOVÁNÍ DIGITÁLNÍCH.
Roman Danel VŠB – TU Ostrava
KRYPTOGRAFIE (c) Tralvex Yeap. All Rights Reserved.
Ing. Roman Danel, Ph.D. Institut ekonomiky a systémů řízení Hornicko – geologická fakulta.
Šifrování a bezpečnost
Ochrana dat Radim Farana Podklady pro výuku. Obsah Kryptografické systémy s tajným klíčem,  výměna tajných klíčů veřejným kanálem,  systémy s tajným.
Protokoly ověřování Projektování distribuovaných systémů Ing. Jiří Ledvina, CSc.
Distribuce klíčů. Metoda Diffie Hellman Použiji jednosměrnou funkci f(x)=p x mod q p,q jsou velká prvočísla. Uživatel A zvolí tajný klíč t, uživatel B.
Prezentace – X33BMI Petr PROCHÁZKA
Úvod do klasických a moderních metod šifrování Jaro 2008, 9. přednáška.
Hillova šifra Lester S. Hill (1929) Polygrafická šifra Φ: Amx K  Bm
Teorie čísel a šifrování Jan Hlava, Gymnázium Jiřího Ortena Kutná Hora Petr Šebek, Gymnázium Uherské Hradiště.
FEAL Fast Encipherment Algorithm Akihiro Shimizu Shoji Miyaguchi, 1987.
Šifrovací algoritmy EI4. DES – Data Encryption Standard  Soukromý klíč  56 bitů  Cca 7,2 x klíčů  Rozluštěn v roce 1997.
BIS Elektronický podpis Roman Danel VŠB – TU Ostrava.
Úvod do klasických a moderních metod šifrování
Kryptografie včera, dnes a zítra
RSA šifra Ronald Rivest, Adi Shamir a Leonard Adlemann.
Teorie čísel Prvočíslo Eulerova funkce φ(n)
Elektronický podpis Ochrana Dat Jan Renner
Protokol SSL Petr Dvořák. Obsah prezentace  Co je SSL  Popis protokolu  Ukázka  Použití v praxi.
Bezpečnost dat Možnosti ochrany - realizována na několika úrovních
RSA – poznámky k algoritmu
Teorie čísel Prvočíslo Eulerova funkce φ(n)
Šifrování pomocí počítačů Colossus 1948 ENIAC.
Hybridní kryptosystémy
1. 2 Zabezpečená mobilní komunikace 3 Private Circle chrání Vaši komunikaci před odposlechem či narušením. Jedná se o komplexní řešení pro zabezpečení.
McEllisova šifra.
McEllisova šifra. James Ellis( ) Clifford Cocks, Malcolm Williamson Alice Bob zpráva šum Odstranění šumu.
Bezpečnost systémů 2. RSA šifra *1977 Ronald Rivest *1947 Adi Shamir *1952 Leonard Adelman *1945 University of Southern California, Los Angeles Protokol.
Symetrická šifra Šifrovací zobrazení y = φ(x,k) Dešifrovací zobrazení x = ψ(y,k)
Kódování a šifrování Monoalfabetické šifry Polyalfabetické šifry
Praktické ukázky Zlín Fakulta informatiky, Masarykova univerzita, Brno Laboratoř Bezpečnosti a aplikované kryptografie.
ELEKTRONICKÝ PODPIS Jiří Suchomel tel.: Přihlášení na:Tester kraj Heslo:ecibudrap.
Informační bezpečnost VY_32_INOVACE _BEZP_16. SYMETRICKÉ ŠIFRY  Používající stejný šifrovací klíč jak pro zašifrování, tak pro dešifrování.  Výhoda.
PB 169 Počítačové sítě a operační systémy1 Bezpečnost v informačních technologiích PB 169 Počítačové sítě a operační systémy.
Elektronick ý podpis v Lotus Notes Josef Honc, M-COM LAN solution
BEZPEČNOSTNÍ TECHNOLOGIE I Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/ )
Kerberos ● Bezpečnost zaručená třetí stranou ● Autentikátory, KDC ● Lístky relace ● Lístky na vydávání lístků ● Autentizace mezi doménami ● Dílčí protokoly.
Složitost algoritmu Vybrané problémy: Při analýze složitosti jednotlivých algoritmů často narazíme na problém, jakým způsobem vzít v úvahu velikost vstupu.
Symetrická šifra Šifrovací zobrazení y = φ(x,k) Dešifrovací zobrazení x = ψ(y,k)
3. Ochrana dynamických dat
Prezentace – X33BMI Petr PROCHÁZKA
Zabezpečení informace
Operační program Vzdělávání pro konkurenceschopnost
Feistlovy kryptosystémy
Bezpečnost informačních systémů
Úvod do klasických a moderních metod šifrování
Zabezpečení informace
Bezpečnost informačních systémů
Úvod do klasických a moderních metod šifrování
Hybridní kryptosystémy
Projektování distribuovaných systémů Lekce 10 Ing. Jiří Ledvina, CSc.
Informácie okolo nás Šifrovanie.
Bezpečnost systémů 2.
Elektronický (digitální) podpis
HASH.
Transkript prezentace:

Feistlovy kryptosystémy Posuvné registry Lucifer DES, AES Horst Feistel Německo, USA IBM

Posuvné registry Blok bitů – délka 2n Klíč – posloupnost k funkcí f 1, f 2,…, f k {0,1} n → {0,1} n, k – hloubka klíče

Posuvné registry, šifrování (m 0, m 1 ) = X m i+1 = m i-1 +f i (m i ) Y = (m k,m k+1 )

Posuvné registry, dešifrování (m k,m k+1 ) = Y m i-1 = m i+1 +f i (m i ) X = (m 0, m 1 )

Příklad šifrování Délka bloku 2n=8, hloubka klíče k=2 f 1 : permutace (1234) → (2143) f 2 : funkce (1234) → (1124)

Příklad šifrování X = ( ) m 0 = (0100), m 1 = (0001) m 2 = m 0 + f 1 (m 1 )=(0100)+ f 1 (0001)=(0100)+(0010)=(0110) m 3 = m 1 + f 2 (m 2 )=(0001)+ f 2 (0110)=(0001)+(0010)=(0011) Y = ( )

Dešifrování Y = ( ) m 2 = (0110), m 3 = (0011) m 1 = m 3 + f 2 (m 2 )=(0011)+ f 2 (0110)=(0011)+(0010)=(0001) m 0 = m 2 + f 1 (m 1 )=(0110)+ f 1 (0001)=(0110)+(0010)=(0100) X = ( )

Počet klíčů Počet funkcí {0,1} n → {0,1} n je F = (2 n ) 2 n Počet klíčů je F k V našem případě n=4, k=2, 2 n =16, F=16 16 = Počet klíčů =

DES funkce f 1,…, f

Data Encryption Standard (1975) generování klíče

DES, šifrování a dešifrování Délka bloku 2n = 64, Hloubka klíče K = 16 Počet klíčů 2 56 = ~ 7*10 16 Při klíčích/sec: 7*10 8 sekund ~ 22 let Prolomeno v roce

AES Počet klíčů 2 64 ~ 1.8*10 19 Za stejných podmínek je pro vyluštění třeba 1,8*10 11 s ~ 5707 let

Distribuce klíčů D-H *1976 Whitfield Diffie *1944 Martin Hellban *1945 Massachusetts Institute of Technology (Boston) Protokol SSL

Metoda Diffie Hellman Použiji jednosměrnou funkci f(x)=p x mod q p,q jsou velká prvočísla. Uživatel A zvolí tajný klíč t, uživatel B tajný klíč s. Uživatel A spočítá f(t) = p t mod q = α a pošle Uživatel B spočítá f(s) = p s mod q = β a pošle

Metoda Diffie Hellman A spočítá β t mod q = p st mod q = K. B spočítá α s mod q = p ts mod q = K. K se použije jako klíč pro jednorázovou šifru (např. DES)

RSA šifra *1977 Ronald Rivest *1947 Adi Shamir *1952 Leonard Adelman *1945 University of Southern California, Los Angeles Protokol PGP

RSA šifra Dvě prvočísla p,q Šifrovací modul N=p.q Dešifrovací exponent t nesoudělný s N Φ(N)=(p-1).(q-1) s je řešení kongurence s.t mod Φ(N)=1 Veřejný klíč: N,s Tajný klíč: p,q, Φ(N), t

RSA šifra Šifrovací zobrazení y=x s mod N Dešifrovací zobrazení x=y t mod N x st mod N = x kΦ(N)+1 mod N = 1 k.x mod N = x

Příklad p=7, q=13 N=91, Φ(N)=6.12=72 t=7 s.7 mod 72 = 1, s=31 Veřejný klíč s=31, N=91, y=x 31 mod 91 Tajný klíč t=7, p=7, q=13, Φ(N)=72, x=y 7 mod 91

Příklad x=24 y= x 31 mod 91= mod 91 = (24 16 mod 91). (24 8 mod 91). (24 4 mod 91). (24 2 mod 91). (24 1 mod 91) = mod 91= mod 91 = 80 x = 80 7 mod 91= (80 1 mod 91). (80 2 mod 91). (80 4 mod 91) = mod 91 = 24

Elektronický podpis X=y t mod N, y =x s mod A y=y st mod N = y

Hybridní kryptosystémy

Symetrická šifra – bezpečná, rychlá, nutná výměna klíčů Asymetrická šifra – není nutná výměna klíčů, pomalá

Hybridní kryptosystémy Text se zašifruje symetrickou šifrou s náhodným klíčem Klíč se zašifruje asymetrickou šifrou

Symetrické šifry Všechny dnes používané jsou založené na Feistlově principu DES,AES,3DES IDEA (International Data Encryptin Algorithm, 1991), pro nekomerční účely volně šiřitelný algoritmus, Xuejia Lai, Švýcarsko

Asymetrické šifry (McEllis) RSA DSA (Digital Signature Algorithm) Diffie Hellman

Elektronický podpis Ze zprávy se vytvoří otisk pomocí otiskové (Hešovací, hash) funkce Otisk se zašifruje tajným klíčem Otisk se pošle spolu se zprávou Bob z přijaté zprávy vytvoří pomocí téže funkce otisk Přijatý otisk dešifruje pomocí veřejného klíče Oba otisky porovná

Hešovací (otiskovací funkce) Jednocestná funkce –Je snadné pro danou zprávu spočítat otisk –Je obtížné z daného otisku rekonstruovat zprávu Jakkoli dlouhá zpráva vytvoří otisk stejné délky (obvykle 64 bitů)‏ Lokální nestabilita –Malá změna vstupních dat způsobí velkou změnu otisku Odolnost vůči kolizi –Je obtížné najít dvě zprávy se stejným otiskem

Hešovací funkce MD5 (Message Digest, 1991, R.Rivest) – částečně prolomena v roce 2004 SHA (Secure Hash algorithm) –SHA 0, 1993, nepoužilo se –SHA 1, 1995, v roce 2005 zveřejněn algoritmus pro nalezení kolize, který vyžaduje prošetřit 2 80 variant –SHA 2 (SHA-224, SHA-256, SHA-384,SHA- 512),1999, považováno za standard –SHA 3, 2007

PGP – Pretty Good Privacy Phill Zimmermann 1991 Symetrická šifra: IDEA, DES, AES Asymetrická šifra: RSA Hešovací funkce: MD5, SHA Autorizace: DSA Generování klíčů pro RSA (seznam Carmichaelových čísel) Evidence klíčů

PGP – Evidence klíčů ID Jméno uživatele Veřejný klíč (N,s) Další informace o uživateli (adresa, fotka, …) Podpis autorizační agentury Odkaz na agenturu

Protokol SSH,SSL Podání rukou (handshake) –Klient pošle serveru požadavek na spojení –Server odešle veřejný klíč a certifikát –Klient ověří certifikát, vygeneruje svůj tajný klíč a odešle číslo alfa –Server vygeneruje tajný klíč a odešle číslo beta –Klient a server si vzájemně potvrdí existenci klíče pro symetrickou šifru Probíhá šifrovaná komunikace domluvenou symetrickou šifrou