FII-4 Jímání elektrické energie. Dielektrika. Úvod do elektrokinetiky.

Slides:



Advertisements
Podobné prezentace
Základy elektrotechniky
Advertisements

Elektrické obvody – základní analýza
INTENZITA POLE E.
Elektrostatika IV Mgr. Andrea Cahelová Hlučín 2013.
INTENZITA POLE.
Elektrostatika.
Elektrická práce. Elektrická energie
Základy elektrotechniky
ELEKTRICKÝ PROUD.
FII-II. Elektrokinetika
Nauka o elektrických vlastnostech těles
III. Stacionární elektrické pole, vedení el. proudu v látkách
I. Statické elektrické pole ve vakuu
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
7.5 Energie elektrostatického pole 8. Stejnosměrné obvody
Elektrostatika II Mgr. Andrea Cahelová Hlučín 2013.
Základy elektrotechniky Přechodové jevy
FIIFEI-03 Elektrokinetika
II. Statické elektrické pole v dielektriku
Magnetické pole.
FII-3 Elektrický potenciál Hlavní body Konzervativní pole. Existence elektrického potenciálu. Práce vykonaná na náboji v elektrickém.
Radiální elektrostatické pole Coulombův zákon
vlastnost elementárních částic
Obvody stejnosměrného proudu
Ohmův zákon, Kirchhoffovy zákony a jejich praktické aplikace
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
Střídavé harmonické napětí a proud
26. Kapacita, kondenzátor, elektrický proud
Elektrický zdroj.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
2. část Elektrické pole a elektrický náboj.
 Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_06  Název materiálu: Elektrický proud v kovech.  Tematická oblast:Fyzika 2.ročník  Anotace: Prezentace.
Elektrický proud Elektrický proud v kovech
33. Elektromagnetická indukce
Elektrické pole Elektrický náboj, Elektrické pole
magnetické pole druh silového pole vzniká kolem: vodiče s proudem
FII-6 Kapacita a kondenzátory
KAPACITA VODIČE, KONDENZÁTOR.  Povrch kulového elektricky nabitého vodiče tvoří hladinu nejvyššího potenciálu.  Mějme dva kulové vodiče s.
FII-4 Elektrické pole Hlavní body Vztah mezi potenciálem a intenzitou Gradient Elektrické siločáry a ekvipotenciální plochy Pohyb.
KAPACITA VODIČE. KONDENZÁTOR.
Jednoduché obvody se sinusovým střídavým proudem
Pokročilá fyzika C803 fIIp_03 Elektrická vodivost ve vodičích
ELEKTRICKÉ POLE.
ELEKTRICKÝ POTENCIÁL ELEKTRICKÉ NAPĚTÍ.
FZDNM_02 Základní fyzikální pojmy a veličiny: elektřina a magnetismus
1. část Elektrické pole a elektrický náboj.
Základy Elektrotechniky
ELEKTRICKÝ PROUD V PEVNÝCH LÁTKÁCH
Elektrostatika Elektrický náboj dva druhy náboje (kladný, záporný)
Práce a výkon v obvodu stejnosměrného proudu
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
7.4 Elektrostatické pole v látkách 7.5 Energie elektrostatického pole
Elektrický proud.
ELEKTŘINA A MAGNETISMUS 1. část Elektrické pole
ELEKTŘINA A MAGNETISMUS 1. část Elektrické pole
ELEKTŘINA A MAGNETISMUS 1. část Elektrické pole
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Jordánová Marcela Název prezentace (DUMu): 7. Elektrický proud v pevných látkách - odpor, výkon Název sady:
Radovan Plocek 8.A. Stavové veličiny Izolovaná soustava Rovnovážný stav Termodynamická teplota Teplota plynu z hlediska mol. fyziky Teplotní stupnice.
P14a1 METROLOGIE ELEKTRICKÝCH VELIČIN PŘEHLED VELIČIN.
ELEKTROTECHNOLOGIE IZOLANTY A DIELEKTRIKA CHARAKTERISTICKÉ VLASTNOSTI.
Základy elektrotechniky Elektromagnetická indukce
ELEKTROMAGNETICKÉ JEVY
Hlavní body Elektrostatika I Potenciál, potenciální energie
11. ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE
OHMŮV ZÁKON PRO ČÁST ELEKTRICKÉHO OBVODU.
změna tíhové potenciální energie = − práce tíhové síly
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
ELEKTRICKÝ POTENCIÁL ELEKTRICKÉ NAPĚTÍ.
Náboj a elektrické pole
KAPACITA VODIČE KONDENZÁTOR.
Transkript prezentace:

FII-4 Jímání elektrické energie. Dielektrika. Úvod do elektrokinetiky. 6. 5. 2003

Hlavní body Jímání elektrické energie Vložení vodiče do kondenzátoru. Vložení dielektrika do kondenzátoru. Mikroskopický popis dielektrik Závěrečné poznámky k elektrostatice. 6. 5. 2003

Jímání elektrické energie I K nabití kondenzátoru musíme vykonat práci. Tato práce je uschována jako potenciální energie a veškerá (neuvažujeme-li ztráty) může být využita později. Například při rychlém vybití optimalizujeme výkon (fotoblesk, defibrilátor). Při změnách parametrů nabitého kondenzátoru může konat práci vnější činitel nebo pole. Musí se odlišit situace, kdy ke kondenzátoru zůstává připojen vnější zdroj. 6. 5. 2003

Jímání elektrické energie II Nabít kondenzátor znamená brát postupně malé kladné náboje ze záporné elektrody a přenášet je na elektrodu kladnou nebo přenášet obráceně náboje záporné. V obou případech se zvyšuje potenciální energie přeneseného náboje na úkor vnější práce. Práce nezávisí na cestě. Můžeme představit, že náboj přenášíme přímo přes prostor mezi elektrodami, i když takto náboj proudit nesmí! 6. 5. 2003

Jímání elektrické energie III Kondenzátor s kapacitou C nabitý nábojem Q nebo na napětí U má energii : Ep = Q2/2C = CU2/2 = QU/2 Faktor ½ v těchto výrazech svědčí o tom, že proces nabíjení je poněkud složitější, než by se zdálo na první pohled. Po přenesení určitého náboje se změní i napětí mezi elektrodami, takže se musí integrovat. 6. 5. 2003

Jímání elektrické energie IV Hustota energie : Mějme deskový kondenzátor S,d,C, nabitý na napětí U : Protože Sd je objem kondenzátoru, můžeme považovat 0E2/2 za hustotu (potenciální) energie. Toto platí pro všechny druhy kondenzátorů. 6. 5. 2003

Vložení vodiče do kondenzátoru I Vložme vodivou destičku s plochou S a tloušťkou  < d do mezery mezi desky kondenzátoru S,d,C,. Vodivá destička obsahuje dostatek volných nositelů náboje, aby na svých plochách vytvořila nábojovou hustotu  stejnou, jako je hustota budící. V důsledku platnosti principu superpozice je pole uvnitř destičky přesně kompenzováno a tedy je nulové. Efektivně se mezera změnila na d - . 6. 5. 2003

Test Vložení vodivé destičky s plochou S a tloušťkou  < d do mezery mezi desky kondenzátoru S,d,C, zvýší jeho kapacitu. Kam bychom měli destičku vložit, aby bylo zvýšení největší ? A) těsně k jedné z desek. B) aby byla rovinou symetrie. C) při zachování rovnoběžnosti na poloze nezáleží. 6. 5. 2003

C: je to jedno ! Vložme destičku do vzdálenosti x od levé desky kondenzátoru. Získáváme sériovou kombinaci kondenzátorů, které mají stejnou plochu S, ale jeden má vzdálenost desek x a druhý d-x-. Tedy : 6. 5. 2003

Vložení vodiče do kondenzátoru II Vložením vodiče kapacita vzrostla. V případě odpojeného zdroje se zachová náboj a energie se sníží – práci koná pole a destička by byla mezi desky vtažena. V případě připojeného zdroje se zachová napětí a energie se zvýší – práci musí vykonat vnější činitel, destička má snahu vyskakovat. 6. 5. 2003

Vložení dielektrika do kondenzátoru I Nabijme kondenzátor, odpojme od zdroje a měřme na něm napětí. Zaplňme nyní celou mezeru dielektrickou destičkou. Pozorujeme : napětí pokleslo poměr r = U0/U destička byla polem vcucnuta r nazýváme dielektrickou konstantou nebo relativní permitivitou dielektrika. r obecně závisí na řadě veličin (T, f)! 6. 5. 2003

Vložení dielektrika do kondenzátoru II Co se stalo : Protože vložená destička je dielektrická nemá volné nositele náboje, které by vytvořily nábojovou hustotu dostatečnou k úplné kompenzaci vnitřního pole. Pole ale zorientuje nebo předtím i vytvoří elektrické dipóly uvnitř dielektrika. Výsledkem je opět objevení se plošného náboje na deskách destičky. Nyní je ale plošná hustota indukovaného náboje nižší, takže dojde pouze k zeslabení pole. Nicméně se opět zvýší kapacita. 6. 5. 2003

Vložení dielektrika do kondenzátoru III Náboje zorientovaných dipólů se vykompenzují v celém objemu, kromě hraničních ploch. Tam zůstává nábojová hustota p . Výsledné pole je opět superpozicí původního pole, vytvořeného původními hustotami  a pole indukovaného, vytvořeného indukovanými nábojovými hustotami p. V případě homogenní polarizace je indukovaná p hustota náboje rovna takzvané polarizaci P, což je hustota dipólového momentu. 6. 5. 2003

Hustota energie v dielektriku V případě homogenních dielektrik lze definovat celkovou permitivitu :  = r0 a použít ji ve všech vztazích, v nichž ve vakuu vystupovala permitivita vakua. Tedy například hustotu energie lze psát jako : E2/2. 6. 5. 2003

Kondenzátor vyplněn dielektrikem částečně Je-li možné zanedbat okrajové jevy, tedy, jsou-li příčné rozměry kondenzátoru i vloženého dielektrika zanedbatelné proti rozměrům ploch, můžeme takový systém považovat za určitou sério-paralelní kombinaci kondenzátorů 6. 5. 2003

Závěrečné poznámky k elektrostatice Většinu jevů jsme ilustrovali na velmi zjednodušených příkladech. Přesto bychom v tomto okamžiku měli hluboce rozumět alespoň nejdůležitějším kvalitativním jevům elektrostatiky. Mělo by nám to pomoci snáze pochopit další partie i například fungování přístrojů pracujících na elektrostatických principech. 6. 5. 2003

Úvod do elektrokinetiky 6. 5. 2003

Hlavní body - elektrokinetika Elektrické proudy – pohyb nábojů, změna pole Elektrické zdroje napětí (a proudu) Ohmův zákon Rezistance a rezistory Přenos náboje, energie a výkon 6. 5. 2003

Elektrické proudy I Zatím jsme se zabývali rovnovážnými stavy. Avšak než je jich dosaženo, dochází obvykle k pohybu volných nositelů náboje v nenulovém elektrickém poli, čili tam existují proudy. Často záměrně udržujeme na vodičích rozdíl potenciálů, abychom udrželi elektrický proud. Elektrický proud v určitém okamžiku je definován jako : 6. 5. 2003

Elektrické proudy II Z fyzikálního hlediska rozlišujeme tři druhy proudu. První dva jsou přímo přenos náboje: kondukční – pohyb volných nositelů náboje v látkách, pevných nebo roztocích konvekční – pohyb nábojů ve vakuu (např. elektronů v obrazovce) posuvný – je spojený s časovou změnou elektrického pole (depolarizace dielektrik) 6. 5. 2003

Elektrické proudy III Elektrické proudy mohou být uskutečněny pohybem nábojů obojí polarity. Podle konvence směřuje proud ve směru elektrického pole, čili stejně, jako kdyby nositelé náboje byli kladné. Pokud jsou volné nositele v určité látce záporné, jako například u kovů, pohybují se fyzicky proti směru konvenčního proudu. 6. 5. 2003

Elektrické proudy IV Nejprve se budeme zabývat stacionárními proudy. Jedná se o zvláštní případ rovnováhy, kdy napětí a proudy v obvodech jsou stálá a konstantní. Později se také zmíníme o časově proměnných proudech. 6. 5. 2003

Jednotkou proudu je 1 ampér se zkratkou A 1 A = 1 C/s. Elektrické proudy V Jednotkou proudu je 1 ampér se zkratkou A 1 A = 1 C/s. Protože proudy lze relativně snadno měřit je ampér přijat jako základní jednotka soustavy SI. Pomocí něj jsou potom definovány i další elektrické jednotky. Například 1 Coulomb : 1C = 1 As. 6. 5. 2003

Elektrické zdroje I Abychom udrželi konstantní proud, například ve vodivé tyčce, musíme udržet konstantní elektrické pole, které se snaží přivést náboje v tyčce k rovnováze. To je ekvivalentní udržování konstantního rozdílu potenciálu neboli napětí mezi konci tyčky. K tomu potřebujeme elektrický zdroj napětí. 6. 5. 2003

Test Může být nabitý kondenzátor využit jako elektrický zdroj k dosažení stacionárního proudu? A) Ano B) Ne 6. 5. 2003

Odpověď Odpověď je NE! Nabitý kondenzátor může být využit jako zdroj například k pokrytí krátkodobých výpadků jiných zdrojů. Vybíjecí proud kondenzátoru však je nestacionární. Proud totiž vybíjí kondenzátor, čili způsobuje pokles jeho napětí a proto i sám klesá. 6. 5. 2003

Elektrické zdroje II Elektrický zdroj je podobný kondenzátoru, ale musí obsahovat mechanismus, který doplňuje náboje odvedené z jednotlivých elektrod, aby napětí mezi nimi zůstalo zachováno. musí obsahovat síly neelektrické povahy (tzv. vtištěné např. chemické), které ho dobíjí. Musí například přenášet kladný náboj ze záporné elektrody na kladnou, a protože je mezi nimi napětí, konat tak práci. 6. 5. 2003

Elektrické zdroje III K udržení konstantního napětí při určitém konstantním proudu se dobíjení, čili i práce, musí vynakládat s určitou rychlostí, takže elektrický zdroj dodává do obvodu určitý výkon. Tam se výkon může transformovat na jiné formy, jako tepelný, světelný nebo mechanický. Část se ovšem vždy ztratí jako nechtěné teplo. 6. 5. 2003

Elektrické zdroje IV Existují speciální dobíjitelné zdroje – akumulátory. Jejich vlastnosti jsou velmi podobně kondenzátorům, ale pracují při (téměř) konstantním napětí. Proto potenciální energie akumulátoru nabitého nábojem Q na napětí U je : Ep = QV a ne QV/2 , jak by tomu bylo u kondenzátoru. 6. 5. 2003

Ohmův zákon Každé vodivé těleso potřebuje určité napětí mezi svými konci, aby vzniklo dostatečně intenzivní elektrické pole k dosažení určitého proudu. Napětí a proud jsou si přímo úměrné podle Ohmova zákona : U = RI Konstanta úměrnosti se nazývá rezistance. Její jednotkou je 1 ohm : 1  = 1 V/A 6. 5. 2003

Rezistance a rezistory I Každé situaci, kdy jistým elementem protéká při určitém napětí určitý proud, můžeme přiřadit určitou rezistanci. U ideálního rezistoru (odporu) je rezistance konstantní bez ohledu na napětí a proud. V elektronice se používají speciální součástky – rezistory, které jsou vyvíjeny tak, aby jejich vlastnosti byly blízké ideálním rezistorům. Rezistance může obecně záviset na napětí, proudu, a řadě jiných faktorů. 6. 5. 2003

Rezistance a rezistory II Důležitou informací o každém materiálu je jeho volt-ampérová charakteristika. Je to naměřená a (vhodně) vynesená závislost proudu na napětí nebo naopak. Může odhalit důležité vlastnosti látek. V každém bodě takové charakteristiky můžeme definovat diferenciální rezistanci jako : dR = U/I Pro ideální odpor je tato veličina konstantní. 6. 5. 2003

Rezistance a rezistory III V elektronice se používá dalších speciálních součástek například variátorů, Zenerových diod nebo varistorů, které jsou vyvinuty tak, aby měly speciální v-a charakteristiku. Používá se jich například ke stabilizaci napětí. 6. 5. 2003

Přenos náboje, energie a výkonu I Ke zdroji o určitém napětí U připojme vodiči se zanedbatelným odporem jistý rezistor R. Získáváme jednoduchý elektrický obvod. Na odporu je stejné napětí jako na zdroji, ale věnujme pozornost orientaci elektrického pole. 6. 5. 2003

Přenos náboje, energie a výkonu II Pole má snahu vyvolat proudy, které zdroj vybíjí v jeho vnitřku i vnějším obvodem. Proudy mají samozřejmě směr snižování potenciální energie. Ve zdroji ale jsou síly neelektrické povahy, které pohybují náboji proti směru pole, takže v celém obvodu se proud pohybuje stejným směrem. Ve zdroji vykonávají vnější síly práci, kterou pole vrací v rezistoru opět do vnějšího prostředí. 6. 5. 2003

Přenos náboje, energie a výkonu III Vezmeme náboj dq a obejdeme s ním obvod. Ve zdroji musí vnější činitel vykonat práci proti poli Udq nebo naopak pole vykoná práci –Udq. V rezistoru koná pole práci Udq, čili vnější činitel koná práci –Udq. Celková práce vykonaná jak vnějším činitelem tak i polem je rovna nule, což je samozřejmě ekvivalentní konzervativnosti elektrického pole. Derivujeme-li časem, dostáváme výkon : P = UI. A po dosazení za rezistanci : P = U2/R = RI2. 6. 5. 2003

Přenos náboje, energie a výkonu IV Neelektrické síly tedy ve zdroji odevzdávají výkon P = UI. Ten je elektrickým obvodem přenesen do spotřebiče jako výkon elektrický. Tam se opět mění na výkon neelektrický (teplo, světelný…). Výhoda je v tom, že zdroj může být ve velké dálce od spotřebičů a výkon se relativně jednoduše a s malými ztrátami přenáší prostřednictvím elektrického pole. 6. 5. 2003

Přenos náboje, energie a výkonu V Ve skutečnosti ztráty v přívodních vodičích nemohou být zanedbány, zvláště při přenosu na dlouhou vzdálenost. Protože ztráty závisí na I2, přenáší se výkon při co nejvyšíšm napětí a nejnižším proudu. 6. 5. 2003

Nabíjení kondenzátoru Mějme v určitém okamžiku nabíjení kondenzátoru o kapacitě C mezi jeho elektrodamihave jisté napětí U(q), které závisí na současném náboji q. na přenesení dalšího náboje dq přes toto napětí musí vnější činitel vykonat práci dEp = U(q)dq. Tedy celková práce k dosažení náboje Q je : ^

Polarizace  Hustota dipólového momentu I Mějme jistý objem V homogenně zpolarizovaného materiálu, malý z hlediska makroskopického, ale velký z hlediska mikroskopického. Můžeme ho považovat za reprezentativní pro celý vzorek :

Polarizace  Hustota dipólového momentu II Předpokládejme, že jeden dipól s momentem p = lq lze uzavřít do hranolu o objemu v = sl. Objem V homogenně zpolarizovaného dielektrika je sestaven z těchto hranolků, čili polarizace v něm musí být stejná jako polarizace v každém z nich :

Polarizace III Výsledné pole v deilektriku : Vyjádříme původní hustotu náboje : Původní pole je tedy rozděleno na výsledné pole a polarizaci podle schopnosti látky se zpolarizovat.

Polarizace IV V lineárním dielektriku je P úměrné výslednému poli E. Tyto veličiny jsou vázány dielektrickou susceptibilitou : Výsledné pole E je r krát slabší než původní pole E0 , takže můžeme též vyjádřit celkovou permitivitu  dielektrického materiálu. ^