Evoluce RNA. Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci.

Slides:



Advertisements
Podobné prezentace
6. Nukleové kyseliny Nukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. Hlavní jejich funkce je uchování genetické informace.
Advertisements

Molekulární základy dědičnosti
Transkripce (první krok genové exprese: Od DNA k RNA)
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
GENETIKA NUKLEOVÉ KYSELINY DNA, RNA
Eduard Kejnovský + Roman Hobza II. SVĚT RNA A POČÁTKY GENOMŮ
NUKLEOVÉ KYSELINY Základ života.
Nukleové kyseliny AZ-kvíz
NUKLEOVÉ KYSELINY BIOCHEMIE.
Transkripce (první krok genové exprese)
Transkripce (první krok genové exprese)
Svět RNA katalýzy Daniel Svozil 1. podzimní škola teoretické a výpočetní chemie ÚOCHB, ,
Transkripce a translace
REGULACE GENOVÉ EXPRESE
Základy přírodních věd
Registrační číslo projektu: CZ.1.07/1.5.00/ Číslo DUM:
Srovnání prokaryotických a eukaryotických buněk
Nukleové kyseliny NA = nucleic acid Reprodukce organismů
Molekulární genetika DNA a RNA.
METABOLISMUS BÍLKOVIN II Anabolismus
NUKLEOVÉ KYSELINY A JEJICH METABOLISMUS
Molekulární základy dědičnosti
Pro charakteristiku plazmidu platí: je kruhová DNA
Molekulární genetika.
Nukleové kyseliny RNDr. Naďa Kosová.
Od DNA k proteinu.
GENETICKÁ INFORMACE je informace, která je primárně obsažena v nukleotidové sekvenci v nukleotidových sekvencích jsou obsaženy následující informace: o.
EXPRESE GENETICKÉ INFORMACE Transkripce
Nukleové kyseliny Přírodní látky
VZNIK ŽIVOTA NA ZEMI Definice života:
BUNĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ
Kapitola II.: Relikty světa RNA
Transkripce a translace
Struktura a organizace genomů
Sacharidová složka nukleotidů
Eduard Kejnovský + Roman Hobza STRUKTURA A EVOLUCE GENOMŮ
NUKLEOVÉ KYSELINY (NK)
2014 Výukový materiál GE Tvůrce: Mgr. Šárka Vopěnková Projekt: S anglickým jazykem do dalších předmětů Registrační číslo: CZ.1.07/1.1.36/
Základy molekulární genetiky. Bílkoviny Makromolekuly složené z aminokyselin jedna molekula bílkoviny tvořena obvykle stovkami aminokyselin v živých organismech.
Autor: Ing. Michal Řehulka  Přírodní makromolekulární látky (Biopolymery)  Vytvářejí dlouhé vláknité molekuly  Nesou a uchovávají genetickou informaci.
Replikace genomu Mechanismus replikace Replikace u bakterií Replikace u eukaryotnich buněk.
EU peníze středním školám Název vzdělávacího materiálu: Nukleové kyseliny II. - RNA, proteosyntéza Číslo vzdělávacího materiálu: ICT10/16 Šablona: III/2.
1. 1.Molekulární podstata dědičnosti. Čtyři hlavní skupiny organických molekul v buňkách.
Název školy: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace Autor: Datum tvorby: Mgr. Daniela Čapounová Název: VY_32_INOVACE_06C_19_Proteosyntéza.
Herpetické viry-úvod RNDr K.Roubalová CSc..
Genetický kód – replikace
Transkripce RNA processing Translace
TRANSKRIPCE DNA.
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
GENETIKA dědičnost x proměnlivost.
Metabolické děje II. – proteosyntéza
Nukleové kyseliny Charakteristika: biopolymery
Molekulární biotechnologie
Sacharidy Lipidy Bílkoviny Nukleové kyseliny Buňka
Od DNA k proteinu - v DNA informace – geny – zápis ve formě 4 písmen = nukleotidů = deoxyribóza, fosfátový zbytek, báze (A, T, C, G) - DNA = dvoušroubovice,
Eduard Kejnovský + Roman Hobza
Molekulární základ dědičnosti
1. Regulace genové exprese:
Molekulární základy genetiky
Eduard Kejnovský & Roman Hobza Kapitola II.: Relikty světa RNA
NUKLEOVÉ KYSELINY Dusíkaté báze Cukry Fosfát guanin adenin tymin
NUKLEOVÉ KYSELINY Dusíkaté báze Cukry Fosfát guanin adenin tymin
Srovnání prokaryotické a eukaryotické buňky
Prokaryotická buňka.
MiRNA
Molekulární biologie (c) Mgr. Martin Šmíd.
37. Bi-2 Cytologie, molekulární biologie a genetika
37. Bi-2 Cytologie, molekulární biologie a genetika
Zdvojování genetické paměti - Replikace DNA
Transkript prezentace:

Evoluce RNA

Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci

Po určité období měl obě funkce jeden typ sloučenin, RNA - informační i katalytická molekula. Objev ribozymů 1982 „The RNA World“ 3.5-4mld

Důkazy pro existenci RNA světa 1. Důležitá role RNA v realizaci genetické informace dnes 2. RNA viry, retroelementy, telomery a konzervativní mechanizmus jejich replikace 3. Ribozymy – enzymaticky aktivní RNA Kritéria testující zda RNA je reliktem světa RNA 1. Katalytické vlastnosti 2. Všudypřítomnost 3. Centrální postavení v metabolismu

Abiotická syntéza nukleotidů a polynukleotidů Chemická kondenzace aktivovaných 5’-polyfosfát nukleotidů 1.Syntéza nukleozidů: vazba bází na ribózu 2.Tvorba nukleotidů: fosforylace nukleozidů (racemát) 3.Tvorba polynukleotidů – tvorba fosfodiesterové vazby

Katalyzované reakce 1.substrátem většinou RNA: a. nejčastěji hydrolýza fosfodiesterových vazeb (endonukleáza) b. obrácený směr – syntéza fosfodiesterových vazeb (ligáza, polym.) c. transesterifikace – editace, sestřih 2. Substrátem není RNA a. syntéza peptidové vazby RNA se dokáže sama modifikovat, vystřihovat, spojovat.

Co se stalo (děje) s RNA katalyzátory když jejich funkce převzaly proteiny Převzaly nové funkce: Ribozom – původně replikace, nyní translace. Spliceosom – původně rekombinace, nyní sestřih. Zachovaly si vysoce konzervativní funkce: - snoRNA – úpravy rRNA - RNAzaP - úpravy tRNA - snRNA - sestřih intronů v mRNA Tyto funkce jsou vysoce konzervativní, zachovaly se u eukaryot. Ztráta některých RNA reliktů u prokaryot, protože proteiny jsou účinnější. Přechod RNA  proteiny stále probíhá.

RELIKTY SVĚTA RNA 1. tRNA - od replikace k proteosyntéze 2. Ribozóm 3. Sestřih a snRNA 4. Maturace rRNA a snoRNA 5. Maturace tRNA a RNázaP 6. Signální rozpoznávací částice a srpRNA 7. Editace RNA a řídící RNA (gRNA) 8. Telomeráza a telomerická RNA 9. Vault RNA (vRNA)

RNA rodina, součást vault ribunocleoprotein complex. Ten se skládá z: major vault protein (MVP) dvou minor vault proteins VPARP a TEP1 několika malých netranslatovaných molekul RNA. Každá vault partikule obsahuje 8-16 vRNA molekul. Vault komplex je spojován s resistencí vůči lékům. vRNA

Vault RNA -přilepena na povrchu jaderné membrány a asociována s komplexem jaderných pórů -funkce neznámá, spíše funkční než strukturní (exp. odstranění RNA) -souvisí s rezistencí rakovinných buněk k léčivům -obsahuje RNA, sekvence konzervativní - tvoří značku pro transport NK z jádra a do jádra - v RNA světě existovala proto-jádro a proto-plazma, aby separovaly replikaci a transkripci, omezení šumu

Starobylé struktury Ribozóm je relikt světa RNA. Proteosyntéza, účast rRNA, tRNA a mnoha proteinů. Původně replikace. Ribozómy jsou ribozymy, které jsou stabilizovány proteiny. Spliceozóm – sestřih pre-mRNA, účast snRNA a mnoha proteinů. Původně rekombinace. Snorpozóm – sestřih pre-rRNA, účast snoRNA a mnoha proteinů.

Malé jaderné RNA (snRNA) - nacházejí se v jádře eukaryot - účastní se sestřihu pre-mRNA a udržování telomer - tvoří nukleoproteinové částice (snRNP = snurps), každá s více proteiny - jsou kódovány introny - U1, U2, U4, U5, U6 - U4+U6 se párují spolu, U6 je katalytická

Maturace rRNA a snoRNA snoRNA (malé jadérkové RNA): – účast při maturaci rRNA a ribozómů - velký funkční komplex - snorpozóm - kódovány introny některých genů – ribozomálních a heat shock genů - 8 různých snoRNA kódováno 8 introny jednoho genu - u savců nejméně 30 různých snoRNA, u kvasinky 26 snoRNA délky 5426 b (ancestrální snorpozóm) - homologie snoRNA s rRNA (18S a 28S), intra- i intermolekulární kontakty - některé snoRNA potřebují spliceosom ke své maturaci

Maturace rRNA a snoRNA Prokaryota absence snoRNA u prokaryot je záhadou maturace rRNA jen za účasti proteinů objev U3snoRNA u archebakterie Sulfolobus acidocaldarius

Maturace tRNA a RNázaP RNázaP : - úloha v maturaci tRNA - je skutečným enzymem, štěpí opakovaně - RNA katalytická podjednotka + proteinová podjednotka - jediný ribozym modifikující RNA u prokaryot - molekulární fosílie RNáza MRP: -druhá podobná molekula vzniklá duplikací a divergencí u eukaryot nebo endosymbiózou - výskyt u Giardia a Microsporidia – nemají mitochondrie tRNA: – relikt světa RNA – konzervativní, všudypřítomná, centrální úloha v metabolismu - interakce s rRNA – původní funkce v replikaci, později v proteosyntéze - některé geny pro tRNA mají introny

Signální rozpoznávací částice a srpRNA - RNA-proteinový komplex zajišťující vazbu ribozómu na ER a sekreci proteinů - původně ribozym štěpící GTP

RNA editace, g-RNA, editozóm - posttrankripční úpravy - modifikace tRNA, rRNA a pre-mRNA, - substituce, inzerce, delece, kryptogeny, templátem je guide RNA (g- RNA) - eukaryota, mitochondrie trypanosom – inzerce či delece polyU - editace je podmínkou tvorby sekundárních struktur bez nichž nemůže dojít k maturaci tRNA RNázou P Původ editace: - u mitochondrií – reakce na asexualitu (Mullerova rohatka), korekce - ve světě RNA – editace jako kontrolní mechanizmus exprese tRNA

Telomeráza - problém replikace konců lineární DNA u eukaryot – RNP komplexy - RNA složka jako templát pro syntézu telomerických repeticí - RNA složka tvoří terciální strukturu, účast v katalýze nejasná - nepřítomna u prokaryot, cirkulární genomy - mutace telomerické RNA vede k prodlužování telomer - homologie s reverzní transkriptázou - starobylé RNA genomy byly lineární → podpora hypotézy genomových značek

Komplexita ribozymů snRNA (spliceosom) snoRNA (snorposom) rRNA (ribozóm) snoRNA jsou potřeba pro sestřih rRNA snRNA jsou potřeba pro sestřih snoRNA, které se nacházejí v intronech jiných genů

PRVNÍ GENOMY

První protein byl RNA-dependentní RNA polymeráza (RNA replikáza) - první geneticky kódovaný protein vznikl náhodou - krátký strukturně jednoduchý peptid - interagoval s RNA replikonem, zvyšoval jeho stabilitu či zlepšoval konformaci - syntéza potomstva musí být rychlejší než degradace rodičů - dostatečná přesnost, ale ne absolutní (možnost evoluce) RNA polymeráza Reverzní transkriptáza Proteiny zvýšily účinnost ribozymů RNARNPprotein

Eigenův limit: replikační přesnost je limitujícím faktorem Čím je vyšší frekvence chyb při replikaci, tím menší genom může projít do další generace Omezení dopadů chyb replikace - více kopií (ploidie) - fragmentace genomu do chromosomů - rekombinace

První RNA organizmus kódující proteiny: Riborgis eigensis První RNA genomy replikované RNA polymerázami – kódovaly 1 peptidový řetězec Množství chyb, tedy vznikala populace lišících se molekul RNA, proto koreplikace vzájemně výhodných lineárních molekul kódujících replikázu, ochranný plášťový protein a konformační podjednotku. Vznik fragmentovaných interagujících genomů (podobnost struktuře eukaryontního genomu – původní, prokaryota odvozená) ~ 15kb genom

Jsou viry funkční relikty časných replikonů? Viry: (a) molekulární paraziti, odvození v důsledku způsobu života nebo (b) primitivní, na hranici života podobně jako časné replikátory RNA viry: - minimální kódující kapacita (coronaviry 30kb) - některé viry střídají fáze RNA a DNA – reminiscence RNA  DNA přechodu Mimiviry – hranice života: - velikost genomu srovnatelná s prokaryoty (1.2Mb) - metabolické geny (911 genů pro proteiny) - 10% repetitivní DNA - jen částečná závislost na hostiteli (proteosyntéza)

Viroidy jsou nejpodobnější časným replikonům - patogeny rostlin až kopií na buňku - malé RNA genomy ( b), ssRNA, cirkulární, - nekódují proteiny – jako replikony éry před proteiny - replikovány hostitelskými RNA polymerázami - rolling-circle mechanizmus - multimery štěpené autokatalytickými ribozymovými sekvencemi - intenzivní vnitřní párování bází jejich genomické sekvence - tvorba sekundárních struktur stabilizujících genomy

První DNA genomy vznikly fúzováním malých kružnic DNA - malé kružnicové DNA genomy, disperzní genom - fúzování, geny jako autonomní DNA - počty kopií statisticky stejné – podobné přenosům plazmidů Fáze A.Pregenomická, B. rekombinační, C. genomická

Fotosyntéza Schopnost tvořit těla z vody a vzduchu za pomocí slunečního záření. Původní organizmy anaerobní, živily se organickými látkami v prapolévce. Kyslík byl pro ně jedovatý. Nahrazení CO 2 (skleníkový plyn) kyslíkem vedlo k ochlazení planety.

Definice genomu Celková genetická informace organizmu. Prokaryota cirkulární chromosom a plazmidy. Eukaryota chromosomy v jádře, mitochondrie a chloroplasty

PŮVOD PROKARYOT A HYPOTÉZA TERMOREDUKCE

Svět RNA podporuje představu starobylosti eukaryot 1.Mnoho reliktů světa RNA u eukaryot (snRNA, snoRNA, gRNA, telomeráza), jen některé také u prokaryot (RNázaP, tRNA). Proč by účinnější proteiny byly nahrazeny molekulami RNA? 2. Posttranskripční úpravy mRNA a rRNA jsou rychlé a účinné u prokaryot. Logičtější je směr ke zlepšování (euk  prok) než naopak. 3. Neexistuje selekční výhoda pro moderní vznik sestřihu a spliceosomu u eukaryot, složitější struktura, mRNA za 1hod místo za 1 minutu, tj. není důvod pro evoluci od prokaryot ke eukaryotům. 4. Eukaryotické telomerázy jsou starobylé struktury, homologie s RT

Původ prokaryot a hypotéza „termoredukce“ - v evoluci prokaryot bylo stádium termofilních organizmů - malá stabilita RNA při teplotách nad 50 o C -časové i prostorové oddělení transkripce a translace nevýhodné – degradace RNA - odstraněním intronů odpadl náročný sestřih - malé RNA vymizely nebo nahrazeny stabilnějšími proteiny

Genomy prokaryot jsou mladší a odvozené

Genomy prokaryot jsou mladší a odvozené - cirkulární - jedna molekula - operony obsahující - mnohé RNA nahrazeny proteiny - lineární - fragmentovaný - introny obsahující - RNA molekuly potřebné pro úpravy RNA ODVOZENÝ GENOMPŮVODNÍ GENOM EUKARYOTA PROKARYOTA