Strategie regulace (proteinové) enzymové aktivity.

Slides:



Advertisements
Podobné prezentace
METABOLISMUS ŠÁRKA VOPĚNKOVÁ 2012.
Advertisements

Citrátový cyklus a Dýchací řetězec
Metabolismus sacharidů
Dýchání rostlin Dýchání = respirace = soubor katabolických reakcí, které slouží k uvolnění energie potřebné např. pro syntetické pochody, příjem živin,
Katabolické procesy v organismu
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je RNDr. Pavlína Koch ová CZ.1.07/1.5.00/ Autor materiálu:RNDr. Pavlína Kochová Datum.
III. fáze katabolismu Citrátový cyklus
ENZYMY = biokatalyzátory.
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
ENZYMY – enzymová katalýza PaedDr. Vladimír Šmahaj
METABOLISMUS SACHARIDŮ
Regulace hlavních metabolických drah
Citrátový cyklus a Dýchací řetězec
METABOLISMUS LIPIDŮ I Katabolismus
Citrátový cyklus Krebsův cyklus.
GYMNÁZIUM, VLAŠIM, TYLOVA 271 Autor Mgr. Anna Doubková Číslo materiálu 4_2_CH_03 Datum vytvoření Druh učebního materiálu prezentace Ročník 8.C.
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
Metabolismus sacharidů
REGULACE GENOVÉ EXPRESE
Cyklus trikarboxylových kyselin, citrátový cyklus, Krebsův cyklus.
CITRÁTOVÝ CYKLUS (KREBSŮV CYKLUS, CYKLUS KYSELINY CITRONOVÉ)
Metabolismus sacharidů
Metabolismus lipidů.
Steroidní hormony Dva typy: 1) vylučované kůrou nadledvinek (aldosteron, kortisol); 2) vylučované pohlavními žlázami (progesteron, testosteron, estradiol)
Dýchací řetězec (DŘ) - testík na procvičení -
Název šablony: Inovace v chemii52/CH12/ , Vrtišková Vzdělávací oblast: Člověk a příroda Název výukového materiálu: Přírodní látky Autor: Mgr.
DÝCHÁNÍ = RESPIRACE.
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
DÝCHACÍ ŘETĚZEC. enzymy jsou umístěny na vnitřní membráně mitochondrií získání energie (tvorba makroergických vazeb v ATP) probíhá oxidací redukovaných.
Metabolismus sacharidů II.
Metabolismus sacharidů I.
Biokalyzátory chemických reakcí
METABOLISMUS LIPIDŮ.
(Citrátový cyklus, Cyklus kyseliny citrónové)
METABOLISMUS GLYKOGENU
Digitální učební materiál
Oxidace mastných kyselin
Krebsův a dýchací cyklus
Obecný metabolismus Metabolismus: Základní pojetí a obsah pojmu.
Cyklus kyseliny citrónové, citrátový cyklus.
Β-oxidace VMK.
Bioenergetika Pro fungování buněčného metabolismu nutný stálý přísun energie Získávání, přenos, skladování, využití energie Na co se energie spotřebovává.
Citrátový cyklus (CC) - testík na procvičení -
Energetický metabolismus
Citrátový cyklus Krebsův cyklus, cyklus kyseliny citrónové, cyklus trikarboxylových kyselin.
INTERMEDIÁRNÍ METABOLISMUS
Střední zdravotnická škola, Národní svobody Písek, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/ Číslo DUM:VY_32_INOVACE_KUB_04.
CYKLUS KYSELINY CITRONOVÉ KREBSŮV CYKLUS
CITRÁTOVÝ CYKLUS (Cyklus trikarboxylových kyselin, Krebsův cyklus).
3. ISOENZYMY (isozymy) – způsob regulace v různých tkáních a za různých vývojových stádií. Isozymy nebo isoenzymy jsou enzymy lišící se sekvencí a složením.
Příklady na allosterii. 1) Pro histidinový zbytek v aktivním místě ATCasy se předpokládá, že stabilizuje tranzitní stav vázaného substrátu. Za předpokladu,
MITOCHONDRIÁLNÍ TRANSPORTNÍ SYSTÉMY
Základy biochemie KBC / BCH
CITRÁTOVÝ CYKLUS = KREBSŮV CYKLUS= CYKLUS TRIKARBOXYLOVÝCH KYSELIN CH 3 CO-ScoA + 3H 2 O  2CO  H  + CoASH.
Glykolýza Glukoneogeneze Regulace
Biosyntéza a degradace proteinů
Č.projektu : CZ.1.07/1.1.06/ Portál eVIM Látkový metabolismus.
Zlepšování podmínek pro výuku technických oborů a řemesel Švehlovy střední školy polytechnické Prostějov registrační číslo : CZ.1.07/1.1.26/
Zlepšování podmínek pro výuku technických oborů a řemesel Švehlovy střední školy polytechnické Prostějov registrační číslo CZ.1.07/1.1.26/
Hormonální regulace lipidového metabolismu
Krebsův a dýchací cyklus
Citrátový cyklus Mgr. Jaroslav Najbert.
Lipidy ß-oxidace.
Hormonální regulace lipidového metabolismu
(Citrátový cyklus, Cyklus kyseliny citrónové)
BIOCHEMICKÁ ENERGETIKA
DÝCHÁNÍ = RESPIRACE.
20_Glykolýza a následný metabolizmus
09-Citrátový cyklus FRVŠ 1647/2012
Transkript prezentace:

Strategie regulace (proteinové) enzymové aktivity. 1. Reversibilní kovalentní modifikace. Katalytické vlastnosti řady enzymů se mění po kovalentní vazbě nějaké skupiny na jejich molekulu – nejčastěji fosforylace. Modifikující enzymy jsou proteinkinasy a proteinfosfatasy. 2. Allosterická kontrola. Allosterické proteiny obsahují regulační místa odlišná od substrátových. Allosterický z řečtiny „allos“ = další, „steros“ = uspořádání. Skládají se z podjednotek (protomerů). Mají schopnost kooperativity. Jako příklady enzym aspartáttranskarbamoylasa (ATCasa) a neenzymový kyslíkový přenašeč hemoglobin. 3. Mnohočetné formy enzymů. Isozymy – jsou homologní enzymy katalyzující stejnou reakci, ale lišící se jemně ve struktuře a více v Km a Vlim a regulačních vlastnostech.

4. Proteolytická aktivace 4. Proteolytická aktivace. Mnoho proteinů je syntetizováno v neaktivní formě. U enzymů jsou to zymogeny (proenzymy). Po odštěpení části řetězce přechází zymogen na aktivní enzym. Jako aktivující složky působí proteolytické enzymy jako chymotrypsin, pepsin a trypsin. Aktivace je ireversibilní. Kaspasy, proteolytické enzymy, účastnící se programové buněčné smrti, jsou aktivovány z formy prokaspas. Dalším příkladem je kaskáda enzymů při srážení krve. 5. Kontrola množstvím přítomného enzymu-kontrola na úrovni transkripce. Modul 11, ibiochemie.upol.cz; Regulace genové exprese. (P. Peč).

1. Regulace enzymové aktivity kovalentní modifikací. Nejčastější jsou fosforylace a defosforylace Dalším způsobem modifikace je např. acetylace. Acetylovány jsou histony (pomocné proteiny obalující DNA v chromosomech a při regulaci genů). Vysoce acetylované histony spojené s geny jsou aktivně přepisovány. Enzymy jsou acetyltransferasa a deacetylasa a jsou regulovány fosforylací. Modifikace není vždy reversibilní. Např. připojení ubiquitinu k proteinu.

Kovalentní modifikace proteinů – acetylace vedlejšího řetězce Lys

Sirtuiny: EC 3. 5. 1. 98 histondeacetylasy nebo histonamidohydrolasy Sirtuiny: EC 3.5.1.98 histondeacetylasy nebo histonamidohydrolasy. Protipólem jsou histonacetylasy EC 2.3.1.48 Sirtuiny (silent information regulator, SIRT) jsou enzymy kódované skupinou vysoce konzervovaných genů přítomných v genomech organismů počínaje archebakteriemi až po eukaryota. Tyto enzymy patří do skupiny NAD+-dependentních deacetylas katalyzujících deacetylaci různých proteinů včetně histonů, p53, p300, acetyl-CoAsynthetasy a R-deacetylacitubulin. Schopnost deacetylace širokého spektra substrátů určuje klíčovou roli sirtuinů při různých biologických funkcích jako je např. oprava DNA, umlčení transkripce, stabilita genomu, apoptosa, signál insulinu a mobilizace tuků.

Sirtuiny Sirtuiny – regulace umlčování genů. Sirtuiny vyžadují pro deacetylaci např. histonů NAD+. Tato skupina enzymů slouží jako citlivý senzor energetického stavu buňky. Pokud je k dispozici dostatek živin a metabolismus pracuje na plné obrátky, vzniká velké množství NADH (inhibitor sirtuinů). Naopak, pokud nevzniká velké množství NADH nebo je veškerý NADH převeden na NAD+, díky zvýšené aktivitě dýchacího řetězce, sirtuiny nerušeně fungují. Co sirtuiny umějí ? U kvasinek bylo zjištěno, že větší množství sirtuinů vede k prodloužení života. Omezený přísun potravy (glukosy) vede k poklesu NADH, sirtuiny jsou aktivovány a deacetylují. Pustí se do histonů a dalších substrátů, které se podílejí na délce života.

Sirtuiny U savců (u laboratorních myší) je nejdůležitějším enzymem SIRT1. K jeho substrátům patří proteiny p53 nebo MyoD, které jsou zapojeny do programované buněčné smrti. Další cestou vlivu SIRT je tuková tkáň, kde interaguje s transkripčním faktorem PPAR gama a touto cestou brání tvorbě proteinů nutných k syntéze tuků. Tuky jsou místo uskladňování odbourávány. SIRT brzdí programovou buněčnou smrt i diferenciaci, mobilizuje zásoby tuků a. umožňuje jejich lepší spalování. Větší počet mitochondrií produkuje méně ROS. Účinnost SIRT lze zvýšit podáním resveratrolu, což je přírodní polyfenolická látka vyskytující se např. v hroznové slupce a jadérkách. Francouzský paradox !!

Resveratrol

Vysvětlivky k tabulce: Common covalent modification of protein activity Ras = onkogen – rat sarcoma viruses. Src = onkogen – Rous sarcoma viruses. Myristoyl-CoA = CH3 – (CH2)12 – CO-CoA Farnesylpyrofosfát (3 x prenyl, prenylace) –

Fosforylace je vysoce účinný způsob modifikace regulující aktivitu cílového proteinu.

Pyruvátdehydrogenasakinasa (PDK) EC 2.7.11.2 PDK inaktivuje pyruvátdehydrogenasu fosforylací za účasti ATP. PDK se podílí na regulaci pyruvátdehdrogenasového komplexu jehož je PD prvním enzymem. PDK a pyruvátdehydrogenasový komplex jsou lokalizovány v matrix mitochondrií u eukaryot. Komplex převádí pyruvát, jako produkt glykolýzy vzniklý v cytoplasmě, na acetyl CoA., který je posléze oxidován v citrátovém cyklu za tvorby energie. PDK snižuje oxidaci pyruvátu v mitochondrii a zvyšuje převod pyruvátu na laktát v cytoplasmě. Opačné působení PDK- defosforylace – a aktivace pyruvátdehdrogenázového komplexu je katalyzováno fofoproteinfosfatasou nazývanou pyruvátdehydrogenasafosfatasa.

Regulace pyruvátdehydrogenasového komplexu

Pyruvátdehdrogenasakinasa (PDK) EC 2.7.11.2 PDK je stimulována ATP, NADH a acetyl CoA. PDK je inhibována ADP, NAD+ CoA-SH a pyruvátem. PDK je také inhibována farmakem dichloroacetátem, který je sledován jako prostředek k léčení několika metabolických onemocnění – zvláště proti rakovině. PDK má čtyři isozymy – PDK1 až PDK4.

Složení pyruvátdehydrogenasového komplexu: Pyruvátdehydrogenasa (E1) Dihydrolipoyltransacetylasa (E2) Dihydrolipoyldehydrogenasa (E3) Např. komplex E. coli je 4 600 kD proteinový komplex. Mitochondriální komplex je 10 000 kD protein, obsahující 20 E2 trimerů obklopených 30 E1 heterotetramery a 12 E3 dimerů. Pyruvátdehydrogenasový komplex katalyzuje sekvencí tří reakcí, sumárně: Pyruvát + CoA + NAD+ → acetyl CoA + CO2 + NADH Komplex využívá pěti různých koenzymů: Thiaminpyrofosfát (TPP), koenzym A (CoA SH), NAD+, FAD a lipoamid. Pyruvátdehydrogenasový komplex, enzymové složení Pyruvátdehydrogenasový komplex, sumární reakce Pyruvátdehydrogenasový komplex, koenzymy 17 17

Thiaminpyrofosfát – TPP, také thiamindifosfát TDP Thiaminpyrofosfát – TPP, také thiamindifosfát TDP. Váže se pevně, ale nekovalentně na pyruvátdekarboxylasu. Prekurzorem je vitamin B1 – thiamin.

Nekovalentní vazba TPP na pyruvátdekarboxylasu.

Pyruvátdehydrogenasa (E1) Pyruvát dekarboxyluje za tvorby hydroxyethyl-TPP meziproduktu. Pyruvátdehydrogenasový komplex, pyruvátdehydrogenasa 20 20

Lipoamid a dihydrolipoamid Lipoamid a dihydrolipoamid. Lipoová kyselina je vázána na E2 amidovou vazbou přes e-aminoskupinu Lys. Pyruvátdehydrogenasový komplex, lipoamid Pyruvátdehydrogenasový komplex, dihydrolipoamid 21 21

Hydroxyethylová skupina je přenesena na dihydrolipoyltransacetylasu (E2). Hydroxyethylový karbanion je současně oxidován na acetyl a lipoamid redukován na disulfid. Pyruvátdehydrogenasový komplex, dihydrolipoyltransacetylasa 22 22

E2 (Dihydrolipoyltransacetylasa) poté katalyzuje transesterifikací, při které se acetyl přenese na CoA za tvorby acetyl-CoA. Pyruvátdehydrogenasový komplex, transesterifikace 23 23

Regenerace lipoamidu na E2 Regenerace lipoamidu na E2. Reoxidace probíhá přes kovalentně vázaný FAD. Pyruvátdehydrogenasový komplex, regenerace lipamidu 24 24

Reoxidace redukovaného E3 (Dihydrolipoyldehydrogenasa ) Reoxidace redukovaného E3 (Dihydrolipoyldehydrogenasa ). Elektrony z FADH2 se přenáší na NAD+ za tvorby NADH. FAD slouží spíše jako vodič elektronů !!! Pyruvátdehydrogenasový komplex, reoxidace dihydrolipoyldehydrogenasy (E3) 25 25

Aktivní místo dihydrolipoamiddehydrogenasy. FAD Cys43 Cys48 NAD+ Dihydrolipoyldehydrogenasa (E3), dihydrolipoamiddehydrogenasa Dihydrolipoamiddehydrogenasa, aktivní místo Tyr 181 26

Lipoyllysylové raménko E2 (2x) Raménko přenáší meziprodukty reakce mezi jednotlivými enzymy. Dihydrolipoyltransacetylasa (E2), lipoyllysylové raménko 27 27

Animace PD http://www.brookscole.com/chemistry_d/templates/student_resources/shared_resources/animations/pdc/pdc.html

Toxicita arsenitanu a organických sloučenin arsenu Toxicita arsenitanu a organických sloučenin arsenu. Inhibují pyruvátdehydrogenasu a 2-oxoglutarátdehydrogenasu a tím i respiraci. Pyruvátdehydrogenasa, arsenitan Pyruvátdehydrogenasa, organické sloučeniny arsenu 29 29