Slovní úlohy o společné práci

Slides:



Advertisements
Podobné prezentace
Slovní úlohy o společné práci − 2
Advertisements

Slovní úlohy o společné práci
Jakékoliv další používání podléhá autorskému zákonu.
Slovní úlohy řešené rovnicí II.
Slovní úlohy o společné práci − 3
Slovní úlohy o pohybu Varianta 2: Pohyby stejným směrem.
Gymnázium, Broumov, Hradební 218
Slovní úlohy o společné práci
Slovní úlohy na společnou práci
Slovní úlohy o směsích (řešené lineární rovnicí o jedné neznámé)
Matematika – 9.ročník Slovní úlohy o pohybu - 1
Slovní úlohy o společné práci
Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (1. část)
* Trojčlenka příklady Matematika – 7. ročník *
Slovní úloha o společné práci
Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (2. část)
Slovní úlohy o společné práci
Lineární rovnice Lineární rovnice s jednou neznámou máj vzorec
Slovní úlohy Obr. 1 (řešené pomocí rovnic) Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radomír Macháň. Dostupné z Metodického.
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání.
AnotacePrezentace, která se zabývá slovními úlohami o pohybu. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci počítají úlohy o pohybu. Speciální.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Základní škola Jakuba Jana Ryby Rožmitál pod Třemšínem Inovace a zkvalitnění výuky projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – společná práce 1 VY_42_INOVACE_27 Sada 4 Základní škola T. G. Masaryka,
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – společná práce 2 VY_42_INOVACE_28 Sada 4 Základní škola T. G. Masaryka,
Slovní úlohy (s procenty v zadání řešené pomocí rovnic)
Zkvalitnění kompetencí pedagogů
Matematika a její aplikace
Grafické řešení soustavy dvou rovnic o dvou neznámých II.
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – společná práce 3 VY_42_INOVACE_29 Sada 4 Základní škola T. G. Masaryka,
Lineární rovnice Řešené úlohy.
Společná práce. 1.Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí.
Název školy: Základní škola a Mateřská škola, Hradec Králové, Úprkova 1 Autor: Mgr. Rachotová Markéta Název: VY_32_INOVACE_11C_16_Slovní úlohy o společné.
Gymnázium a obchodní akademie Mariánské Lázně Mgr. Klára Tesařová.
Slovní úlohy o společné práci VY_42_INOVACE_24_01.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Slovní úlohy o společné práci − 3. Jak při řešení slovních úloh postupovat? 1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Poměr v základním tvaru.
Slovní úlohy o směsích (řešené lineární rovnicí o jedné neznámé)
ZÁKLADNÍ ŠKOLA, JIČÍN, HUSOVA 170 Číslo projektu
Slovní úlohy řešené soustavou rovnic
Slovní úlohy o společné práci
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Řešení slovních úloh rovnicemi
Slovní úlohy o pohybu Pohyby proti sobě s časovým posunem.
Tento materiál byl vytvořen rámci projektu EU peníze školám
Název školy: ZŠ a MŠ Březno Autor: Jaroslava Pilná
Základní škola Čelákovice
Řešení slovních úloh rovnicemi
Rovnice ve slovních úlohách III.
Název školy: ZŠ Bor, okres Tachov, příspěvková organizace
Slovní úlohy o společné práci stejný čas
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
Krácení a rozšiřování postupného poměru.
Slovní úlohy o společné práci − 2
Slovní úlohy na společnou práci
Slovní úlohy o společné práci − 2
Slovní úlohy o společné práci
Slovní úlohy o společné práci
Slovní úlohy o směsích (řešené lineární rovnicí o jedné neznámé)
Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (1. část)
Slovní úlohy řešené soustavou rovnic
Slovní úlohy o pohybu.
Slovní úlohy o pohybu.
Poměr v základním tvaru.
Slovní úlohy o pohybu Varianta 2: Pohyby stejným směrem.
Slovní úlohy o společné práci − 3
Transkript prezentace:

Slovní úlohy o společné práci http://dum.rvp.cz/vyhledavani/fulltext2.html?q=%C3%BAlohy+o+spole%C4%8Dn%C3%A9+pr%C3%A1ci&s.x=0&s.y=0&rvpSearchScope=module http://dum.rvp.cz/materialy/slovni-ulohy-o-spolecne-praci-1.html

Jak při řešení rovnic postupovat? 1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí zvolené neznámé a zadaných podmínek vyjádři všechny ostatní údaje z textu. 4. Vyjádři logickou rovnost plynoucí z textu úlohy a na jejím základě sestav rovnici a vyřeš ji. 5. Proveď zkoušku, kterou ověříš, že získané výsledky vyhovují všem podmínkám úlohy. 6. Napiš odpovědi na otázky zadané úlohy.

Tak si to pojďme ukázat na konkrétních příkladech. Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: Pracovat mohou dvě, tři, ale i více těles, osob najednou. Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více, to, na čem společně „makají“, je vždy rovno 1). Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. Tak si to pojďme ukázat na konkrétních příkladech. Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem.

Slovní úloha o společné práci Zkusíme nejdříve tento typ úloh. Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: Pracovat mohou dvě, tři, ale i více těles, osob najednou. Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více, to, na čem společně „makají“, je vždy rovno 1). Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. Tak si to pojďme ukázat na konkrétních příkladech. Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem.

Slovní úloha o společné práci Ukázka zadání takové úlohy: Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně?

Slovní úloha o společné práci 1. přítokem by se bazén naplnil za 20 hodin, což znamená, že za 1 hodinu by se naplnila 1/20 bazénu, za 2 hodiny pak 2/20 a za x hodin společné práce x/20 bazénu. 2. přítokem by se bazén naplnil za 30 hodin, což znamená, že za 1 hodinu by se naplnila 1/30 bazénu, za 2 hodiny pak 2/30 a za x hodin společné práce x/30 bazénu. Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně?

Příklad: Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně? Tak ještě jednou a pomaleji. 1. přítok: 2. přítok: 1 celý bazén

Příklad: Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně? 1. přítok: 2. přítok:

sám Za 1 h Za x hodin 1.přítok 20h 2.přítok 30h společně x 1

1 sám Za 1 h Za x hodin 1.přítok 20h 2.přítok 30h společně x Příklad: Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně? 2. přítok: 1. přítok: sám Za 1 h Za x hodin 1.přítok 20h 2.přítok 30h společně x 1

Typická rovnice slovních úloh o společné práci Příklad: Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně? 1. přítok: 2. přítok: Jedna celá společná práce Doba společné práce Doba práce prvního Doba práce druhého Typická rovnice slovních úloh o společné práci

Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem Příklad: Jedním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní oběma přítoky současně? 1. přítok: 2. přítok: Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem Oběma přítoky současně se bazén naplní za 12 hodin.

Příklad: Jeden kopáč by vykopal příkop pro telefonní vedení za 6 hodin. Druhý by vykopal tentýž příkop za 3 hodiny. Jak dlouho by jim vykopání příkopu trvalo, kdyby pracovali společně?

Příklad: Jeden kopáč by vykopal příkop pro telefonní vedení za 6 hodin. Druhý by vykopal tentýž příkop za 3 hodiny. Jak dlouho by jim vykopání příkopu trvalo, kdyby pracovali společně? 1. kopáč: 2. kopáč: Kdyby kopáči pracovali společně, vykopali by příkop za 2 hodiny.

Příklad: První čerpadlo vyčerpá vodu z nádrže za 3 hodiny, druhé čerpadlo za 7 hodin. Za jak dlouho se vyčerpá voda z nádrže, když budou obě čerpadla pracovat společně?

Příklad: První čerpadlo vyčerpá vodu z nádrže za 3 hodiny, druhé čerpadlo za 7 hodin. Za jak dlouho se vyčerpá voda z nádrže, když budou obě čerpadla pracovat společně? 1. čerpadlo: 2. čerpadlo: x = 2,1 h = 2 h 6 min Oběma čerpadly se voda z nádrže vyčerpá za 2 hodiny a 6 minut.

Příklad: Jeden kombajn poseká obilí na poli za 15 hodin, druhý kombajn poseká totéž pole za 10 hodin. Za kolik hodin by bylo obilí z tohoto pole sklizeno, jestliže by pracovaly oba kombajny společně?

Příklad: Jeden kombajn poseká obilí na poli za 15 hodin, druhý kombajn poseká totéž pole za 10 hodin. Za kolik hodin by bylo obilí z tohoto pole sklizeno, jestliže by pracovaly oba kombajny společně? 1. kombajn: 2. kombajn: Oběma kombajny by pole bylo sklizeno za 6 hodin.

Příklad: Jeden zedník nahodí dům za 12 dní, druhý zedník nahodí tentýž dům za 20 dní. Za jak dlouho nahodí tentýž dům, jestliže budou pracovat společně?

Příklad: Jeden zedník nahodí dům za 12 dní, druhý zedník nahodí tentýž dům za 20 dní. Za jak dlouho nahodí tentýž dům, jestliže budou pracovat společně? 1. zedník: 2. zedník: Oba zedníci společně nahodí dům za 7,5 dne.

Příklad: Bazén se naplní prvním přívodem vody za 2 hodiny, druhým přívodem za 3 hodiny a třetím přívodem za 4 hodiny. Za jak dlouho se naplní, když jsou otevřeny všechny tři přívody?

Příklad: Bazén se naplní prvním přívodem vody za 2 hodiny, druhým přívodem za 3 hodiny a třetím přívodem za 4 hodiny. Za jak dlouho se naplní, když jsou otevřeny všechny tři přívody? 1. přívodem … 2. přívodem … 3. přívodem … Všemi třemi přívody se bazén naplní za 12/13 hodiny.

http://dum. rvp. cz/vyhledavani/fulltext2. html http://dum.rvp.cz/vyhledavani/fulltext2.html?q=%C3%BAlohy+o+spole%C4%8Dn%C3%A9+pr%C3%A1ci&s.x=0&s.y=0&rvpSearchScope=module http://dum.rvp.cz/materialy/slovni-ulohy-o-spolecne-praci-1.html