Derivace funkce. Velikost populace v čase t 0 je N (t 0 ). Velikost populace v čase t  t 0 je N ( t ). Přírůstek populace za jednotku času je [N(t) –

Slides:



Advertisements
Podobné prezentace
Základy infinitezimálního počtu
Advertisements

Přednáška 10 Určitý integrál
EU-8-58 – DERIVACE FUNKCE XIV
Komplexní čísla. Komplexní číslo je uspořádaná dvojice [x, y], kde číslo x představuje reálnou část a číslo y imaginární část. Pokud je reálná část nulová,
Fakulta životního prostředí Katedra informatiky a geoinformatiky
tečna funkce y = f(x) T = [xt, yt] normála funkce y = f(x) ά
7. Přednáška limita a spojitost funkce
Limita funkce. Koncentrace 137Cs v odpadním kanálu jaderné elektrárny se v časovém intervalu (t1, t2) řídí rovnicí c (t) = c0e -(t-t0). V čase t1 dojde.
Neurčitý integrál. Příklad.
Fakulta životního prostředí Katedra informatiky a geoinformatiky Přednáška 07 Průběh funkce Matematika II. KIG / 1MAT2.
ROVNOMĚRNÝ POHYB.
Základy infinitezimálního počtu
Hybnost, Těžiště, Moment sil, Moment hybnosti, Srážky
Fakulta životního prostředí Katedra informatiky a geoinformatiky Přednáška 05 Spojitost a derivace funkce Matematika II. KIG / 1MAT2.
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
DERIVACE FUNKCE Autor: RNDr. Věra Freiová
DERIVACE A MONOTÓNNOST, LOKÁLNÍ EXTRÉMY Autor: RNDr. Věra Freiová Gymnázium K. V. Raise, Hlinsko, Adámkova 55.
Použití derivací. a f(a) T t 1) Tečna ke grafu funkce
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík
BRVKA Georg F.B. Riemann ( ). BRVKA Známe různé inverzní procesy (i matematické), integrování je inverzní proces k derivování. Definice: I je.
EU-8-51 – DERIVACE FUNKCE VII
Derivace funkce ©2006 Ondřej Havelka, Viliam Staněk ©2006 Ondřej Havelka, Viliam Staněk.
Neurčitý integrál. Příklad. Na ploše 10 m x 10 m se vysazuje stejný typ rostlin ve 2 barvách. Obě barvy jsou odděleny křivkou y = x ( 1 – 0.1x ). Kolik.
Integrály v kinematice Autor: RNDr.Zdeňka Strouhalová Fyzika, seminář z fyziky Inovace výuky na Gymnáziu Otrokovice formou DUMů CZ.1.07/1.5.00/
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Analýza 1 J.Hendl. Reálná funkce reálné proměnné Def: Nulový bod funkce je x takové, že: Def: Monotonie Funkce je rostoucí, jestliže Funkce je klesající,
KONVEXNOST A KONKÁVNOST FUNKCE INFLEXNÍ BODY
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
A. Soustavy lineárních rovnic.
1. Derivace Derivace je míra rychlosti změny funkce.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Funkce více proměnných.
Rychlost okamžitá rychlost hmotného bodu:
Lineární zobrazení.
Oskulační rovina křivky
EU-8-60 – DERIVACE FUNKCE XVI
Derivace funkce. Velikost populace v čase t 0 je N (t 0 ). Velikost populace v čase t  t 0 je N ( t ). Přírůstek populace za jednotku času je [N(t) –
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Předpokládejme, že velikost populace v čase t  0 lze vyjádřit vztahem
Diferenciální geometrie křivek
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Derivace funkce Derivací funkce f je funkce f ´ která udává sklon (strmost) funkce f v každém jejím bodě Kladná hodnota derivace  rostoucí funkce Záporná.
DERIVACE FUNKCE. Def.: Nechť je funkce  definována v jistém okolí bodu x 0. Existuje-li nazýváme ji derivací funkce  v bodě x 0  ´(x 0 ) Pozn.: Derivaci.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Derivace –kmity a vlnění
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Kde je elektrické pole „silnější“
VY_32_INOVACE_10-03 Mechanika I. Rovnoměrný pohyb.
 př. 2 Jsou dány vektory u=(4;-1;2), v=(0;5;6), w=(s;t;5). Určete souřadnice s, t vektoru w, jestliže víte, že vektor w je kolmý k vektoru u i k vektoru.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Radiologická fyzika základy diferenciálního počtu
Gottfried Wilhelm von Leibniz
VEKTORY.
DERIVACE - SOUČINU FUNKCÍ - PODÍLU FUNKCÍ - SLOŽENÉ FUNKCE
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
DERIVACE A MONOTÓNNOST, LOKÁLNÍ EXTRÉMY. ROLLEOVA VĚTA: Mějme funkci , která má tyto vlastnosti: a) je spojitá v uzavřeném intervalu ‹a,b› b) v každém.
LIMITA FUNKCE Mgr. Martina Fainová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR POZNÁMKY ve formátu PDF.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Reálná funkce reálné proměnné Přednáška č.1. Požadavky ke zkoušce Na Tamtéž studijní literatura.
A. Soustavy lineárních rovnic. y = 2x + 5 2x – y = -5 a 1 x 1 + a 2 x 2 = b a 1 = 2 a 2 = -1 b = - 5 x + y = 5 3x + 3y = 18 x + y = 5 3x + 3y = 15 x +
1. Spojité funkce Funkce je spojitá na intervalu I, lze-li její graf nakreslit plynulou čarou, aniž zdvihneme tužku z papíru. Znamená to, že tužku nemůžeme.
Předpokládejme, že velikost populace v čase t  0 lze vyjádřit vztahem
Derivace funkce Přednáška 2.
1 Lineární (vektorová) algebra
Funkce více proměnných.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Základy infinitezimálního počtu
Číslo projektu Číslo materiálu název školy Autor Tématický celek
INTENZITA ELEKTRICKÉHO POLE.
KŘIVKY Cílem této přednášky není prezentovat kompletní teorii vektorových funkcí a diferenciální geometrii křivek, ale nastínit jen tu část, která nám.
Transkript prezentace:

Derivace funkce. Velikost populace v čase t 0 je N (t 0 ). Velikost populace v čase t  t 0 je N ( t ). Přírůstek populace za jednotku času je [N(t) – N(t 0 )] / [t – t 0 ]. Blíží-li se t k t 0, pakje přírůstek funkce N v bodě t 0 a značí se a jedná se o (první) derivaci funkce f v bodě t 0. Poznámky.  Jestliže má funkce derivaci v bodě, která je konečná (vlastní), pak v tomto bodě a v okolí bodu je funkce definovaná.  Jestliže má funkce derivaci v bodě, která je konečná (vlastní), pak je v tomto bodě spojitá.  Obrácené tvrzení NEPLATÍ: existují funkce spojité, které nemají derivaci.  Protože je derivace funkce definovaná limitou, lze definovat derivace zleva a zprava pomocí jednostranných limit.  Derivace je opět funkce, o jejíž derivaci lze uvažovat. Tak se definuje 2. 3.,... derivace funkce v bodě.  Pokud derivace v bodě existuje, pak existuje právě 1. Derivace zleva se pak rovná derivaci zprava v tomto bodě.

Význam derivace funkce. Derivace v bodě má význam směrnice tečného vektoru ke křivce v bodě.

Další významy derivace. Derivace některých funkcí.

Operace s derivacemi. Nechť x  D(f)  D(g). Nechť existuje f / (x) a g / (x). Pak  (f ( x )  g ( x )) / = f ( x ) /  g ( x ) /  (f ( x ) g ( x )) / = f ( x ) / g ( x ) + f ( x ) g ( x ) /  Nechť g ( x )  0. Pak (f ( x ) / g ( x )) / = (f ( x ) / g ( x ) - f ( x ) g ( x ) / ) / (g ( x ) 2 ) Derivace složené funkce. Nechť f má vlastní (konečnou) derivaci v bodě x. Nechť g má vlastní derivaci v bodě y = f ( x ). Pak g ( f ( x ) ) / = g / ( y ) f / ( x ) Derivace inverzní funkce. Nechť f je spojitá a prostá na intervalu I  D ( f ). Označím g = f -1. Nechť f ( x ) = y. Jestliže f / ( x )  0, pak g / ( y ) = 1 / f / ( x ).

Příklady. Derivujte funkce. Derivace součtu je rovna součtu derivací. Proto: Jedná se o složenou funkci, D( f ) = R

Částice se pohybuje v čase t podle rovnice y = 3 + cos 2t. Určete okamžitou rychlost a zrychlení částice. Nechť f ( x ) = | x |. Určete f / ( 0 ). Derivace v bodě 0 neexistuje. Nechť f ( x ) = 1 / x. Určete f / ( 0 ). Derivace neexistuje, protože zde není funkce definována. Lze však vypočítat limitu derivace v tomto bodě. Derivace v nekonečnech se definuje limitou derivací:

Nechť f ( x ) = 1 / x 2. Určete f / ( 0 ). Funkce není v bodě definována. Předpokládejme, že velikost populace v čase t je dána vztahem. Dokažte, že platí Předpokládejme, že velikost populace v čase t je dána vztahem, kde N(0) je velikost populace v čase t = 0. Dokažte, že platí

Úlohy k procvičení. Zderivujte. Nechť křivka logistického růstu populace je kde K, r jsou kladné konstanty a N(0) je velikost populace v čase 0. Dokažte, že platí Určete derivaci funkce v bodě x 0