přerušení (instrukční cyklus, obsluha) vztahy mezi tématy

Slides:



Advertisements
Podobné prezentace
CIT Paměti Díl X.
Advertisements

Mikroprocesory Procesory. Procesor je synchronní zařízení provádí operace s daty je programovatelný pomocí mikroinstrukcí je více rodin procesorů (jednočipy.
Komunikace periférii.
Zásobník (LiFo) Fronta (FiFo)
SOFTWARE dálkové studium PODNIKÁNÍ 2. listopad 2006.
SYSTÉM PŘERUŠENÍ U 68HC11.
Operační systémy. OPERAČNÍ SYSTÉMY pomoc operátorovi, podpora vlastností reálného času, víceuživatelských a více úlohových systémů.
hierarchie pamětí vyrovnávací paměť režimy práce procesoru
Úvod. Základní úrovně: hardwarová (procesory, jádra) programová (procesy, vlákna) algoritmická (uf... ) Motivace: zvýšení výkonu redundance jiné cíle,
Kontakty slajdy: ftp://ulita.ms.mff.cuni.cz/predn/POS.
Kontakty Webpage přednášky: – Slajdy (MS PowerPoint): –ftp://ulita.ms.mff.cuni.cz/predn/PRG017 Technické.
7. přednáška konzistence dat (příklad) -multithreading (monoprocesor) -sdílení času -analýza časového kvanta -priorita -přepínání (procesů,
Rozhraní PC.
Architektura a vývoj PC 2.
Paměťové obvody a vývoj mikroprocesoru
Operační systémy Přednášky pro výuku předmětu Operační systémy Ing. Antonín Vaněk, CSc. DFJP, Univerzita Pardubice září 2003.
Tato prezentace byla vytvořena
Výrok "Pokud nejste príliš bohatí a velmi excentričtí, nebudete mít důvod, proč si dopřát luxus počítače ve vaší domácnosti." (E.Yourdon, 1975)
Operační systém (OS) ICT Informační a komunikační technologie.
Operační systémy LS 2014/ přednáška 23. února 2015.
Co budeme dělat dnes? Motherboard, základní deska, main board...
Informatika / …o počítači (základní pojmy, jednoduché představy) 2006.
13AMP 2. přednáška Ing. Martin Molhanec, CSc.. Stav procesu (kontext) Stav procesu je úplná informace, kterou je nutné uschovat při přerušení procesu,
Sběrnice Obr. 1.
TEP Přerušení č.7. Přerušení Téma Přerušení TEP Předmět TEP Juránek Leoš Ing. Autor Juránek Leoš Ing. TEP.
Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou I NFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Ing. Jan Roubíček.
13AMP 3. přednáška Ing. Martin Molhanec, CSc.. Co jsme se naučili naposled I. Co je to kontext úlohy Co je to kontext úlohy Task switching (přepnutí úlohy)
Operační systémy Přednášky pro předmět Operační systémy Ing. Antonín Vaněk, CSc. DFJP, Univerzita Pardubice září 2003.
Tato prezentace byla vytvořena
Kontakty Webpage přednášky: – Slajdy (MS PowerPoint): –ftp://ulita.ms.mff.cuni.cz/predn/PRG017 Technické.
Kontakty Webpage přednášky: – Slajdy (MS PowerPoint): –ftp://ulita.ms.mff.cuni.cz/predn/PRG017 Technické.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Operační systémy LS 2014/ konzultace 20. února 2015 (4 hodiny)
1. ELEKTRICKÝ SIGNÁL VSTUPUJE DO uPROCESORU 2.VYMAŽE DATA KTERÁ ZŮSTALA V REGISTRECH VNITŘNÍ PAMĚTI 3. NASTAVÍ REGISTR CPU – ČÍTAČ INSTRUKCÍ NA F000 ADRESA.
Informatika - Paměti, ROM, RAM akademický rok 2013/2014
3. konzultace (5 hodin) Studijní materiály najdete na adrese:
Vnitřní (operační paměť)
Procesor Renesas H8S/2633F.
Výrok „Vypadá to, že jsme narazili na hranici toho, čeho je možné dosáhnout s počítačovými technologiemi. Člověk by si ale měl dávat pozor na takováto.
Kontakty Webpage přednášky: – Slajdy (MS PowerPoint): –ftp://ulita.ms.mff.cuni.cz/predn/PRG017 Technické.
Operační systémy. Výpočetní systém Stroj na zpracování dat vykonávající samočinně předem zadané operace.
Přerušení programu Střední odborná škola Otrokovice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Miloš Zatloukal.
1. přednáška organizace přednášek a cvičení -úvodní informace, požadavky na posluchače -literatura -souvislost HW a SW, komponenty počítačového.
1. konzultace (5 hodin) Studijní materiály najdete na adrese:
PB153 OPERAČNÍ SYSTÉMY A JEJICH ROZHRANÍ
Operační systémy. Výpočetní systém Stroj na zpracování dat vykonávající samočinně předem zadané operace.
PB 169 Počítačové sítě a operační systémy1 Zdeněk Říha Marek Kumpošt PB169 Počítačové sítě a operační systémy.
Operační systémy LS 2014/ přednáška 16. března 2015.
Univerzální procesor. Jako vhodný procesor na místo virtuálního univerzálního mikroprocesoru (procesoru) byl pro výklad jako vhodný typ vybrán procesor.
Uvedení autoři, není-li uvedeno jinak, jsou autory tohoto výukového materiálu a všech jeho částí. Tento projekt je spolufinancován ESF a státním rozpočtem.
Kontakty Webpage přednášky: – Slajdy (MS PowerPoint): –ftp://ulita.ms.mff.cuni.cz/predn/PRG017 Technické.
Operační systémy 2015/ přednáška 21. března 2016.
BEZPEČNOSTNÍ TECHNOLOGIE I Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/ )
Vypracoval / Roman Málek
OPERAČNÍ SYSTÉMY Část 4 – správa souborů
Služby Windows Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu ISSN: 
MIKROPROCESOROVÁ TECHNIKA
Jednočipové počítače – instrukční sada
1. ročník oboru Mechanik opravář motorových vozidel
Výukový materiál zpracován v rámci projektu
Název školy: ZŠ Bor, okres Tachov, příspěvková organizace
Operační systémy 9. Spolupráce mezi procesy
Segmentace Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu ISSN: 
hierarchie pamětí vyrovnávací paměť režimy práce procesoru
Správa disků
přerušení (instrukční cyklus, obsluha) vztahy mezi tématy
Informatika / …o počítači
Informační a komunikační technologie 5. ročník
Přepínání procesů Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Libor Otáhalík. Dostupné z Metodického portálu ISSN: 
Paměť.
Transkript prezentace:

2. přednáška http://www.uai.fme.vutbr.cz/~vdumek/ 27. 2. 2014 přerušení (instrukční cyklus, obsluha) vztahy mezi tématy vytváření programu definice operačního systému provádění vnořených procedur zásobník, růst zásobníku při dvou procedurách DMA, multiprogramování Studijní materiály najdete na adrese: http://www.uai.fme.vutbr.cz/~vdumek/

Přerušení Přerušení (Interrupt) je schopnost procesoru přerušit právě vykonávaný program a začít vykonávat program jiný (obsluha přerušení), začalo se implementovat z důvodu obsluhy periferií (procesor nemusí čekat ve smyčce na pomalé zařízení), dnes je využito při přepínání procesů - technickými prostředky (vnější), instrukcí INTR nemaskovatelná maskovatelná - programově (vnitřní) instrukcí INT n, chybou při běhu programu PIC 8259A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - sled činností: uloží se FLAGS vynulují se IF, TF CS do zásobníku do CS obsah hodnoty přerušení IP do zásobníku (neprovedená instrukce) do IP obsah hodnoty přerušení - přerušení se uplatní po provedení instrukce - návrat instrukcí IRET

IRQ Levels (Interrupt Request) Typ signálu přerušení, které lze maskovat (bit IF – Interrupt Enable Flag v příznakovém registru nastaven na 0), potom se přerušení generované signálem INTR neprovede IRQ0 - systémový časovač IRQ8 – hodiny reálného času IRQ1 - řadič klávesnice IRQ9 – available, NIC, SCSI IRQ2 - sekundární PIC IRQ10 – available, NIC, SCSI IRQ3 - COM2, COM4 IRQ11 – available, NIC, SCSI IRQ4 - COM1, COM3 IRQ12 – myš, PS/2 IRQ5 - LPT2 (zvuková karta) IRQ13 – floating point unit IRQ6 - řadič disket IRQ14 – ATA (CD ROM, HD) IRQ7 - LPT1 (zvuková karta) IRQ15 - ATA

Vyvolání přerušení po instrukci N Návrat z přerušení T-M Zásobník T-M Zásobník N+1 Program counter N+1 Y+L+1 T T General registers Y Y Start Start Přerušovací rutina Stack pointer Přerušovací rutina T T-M Y+L Y+L Return Return Processor Processor T-M T Vyvolání přerušení po instrukci N N N Uživatelský program Uživatelský program N+1 N+1 Návrat z přerušení Main memory Main memory

. . . . . . . . . Instrukční cyklus s přerušením START HALT 1 2 i i+1 USER PROGRAM INTERRUPT HANDLER 1 2 . . . . . . i i+1 . . . Interrupt disabled M CHECK FOR INTERRUPT INITIATE INTERRUPT HANDLER START FETCH NEXT INSTRUCTION EXECUTE INSTRUCTION Interrupt enabled HALT

Obsluha přerušení Sekvenční způsob Vnořený způsob Po dobu přerušení je zákaz jiného Je možné zavádět prioritní obsluhu přerušení Sekvenční způsob Vnořený způsob

Comunication interrupt Časování při vícenásobném přerušení Interrupt occurs = 10 Interrupt occurs = 15 t=0 t=15 5 2 t=10 Comunication interrupt service routine t=25 Interrupt occurs = 20 t=25 4 t=40 User program Printer interrupt service routine t=35 Disk interrupt service routine

Důležité vztahy mezi tématy Process description and control Scheduling Memory management Concurrency I/O management File management Networking Security

Vytváření programu Idea Algorithm Files Source Program Binary Program Execution Engine Status Stack Algorithm Files Source Program Binary Program Data Other Resources Process

Vytváření programu Algoritmus determinovanost rezultativnost hromadnost efektivnost analýza editace překlad sestavení spuštění

Operační systémy Cíle: použití počítače je pohodlnější a výhodnější, čerpání systémových zdrojů je účinnější, schopnost vývoje (testování, nové funkce, ...) Funkce: vytváření programů (editor, debugger), spouštění programů, přístup na I/O, přístup k souborům, přístup a ochrana systémových zdrojů, detekce chyb, evidence Charakteristiky: souběžnost, sdílení (cena, sdílená data, vytváření dalších úloh, odstranění redundance), determinovanost (stejné výsledky ze stejných dat a kdykoliv), výkonnost (střední čas mezi procesy, čas odezvy, čas obrátky, využití zdrojů, ...), spolehlivost, udržovatelnost, velikost

Definice operačního systému program, který je prostředníkem mezi uživatelem a technickým vybavením účelem OS je poskytovat uživateli prostředí pro spouštění programů základní část téměř všech počítačových systémů správce prostředků (řídí, alokuje, odebírá) – Resource Manager řídí provádění uživatelských programů a I/O operací – Control Program program, který vždy běží - Kernel

Provádění vnořených procedur 4000 Main program CALL Proc1 4100 4101 4500 CALL Proc2 Procedura Proc1 4600 4601 CALL Proc2 4650 4651 RETURN 4800 Procedura Proc2 4601 4651 4101 4101 4101 4101 4101 RETURN . . . . . . .

Zásobník - struktura LIFO v operační paměti Dno zásobníku SS:0A1A SS:0A1A 0A18 AA01 0A16 11AA 0A14 3C00 Vrchol zásobníku SS:0A14 0A12 - struktura LIFO v operační paměti - instrukce PUSH (vložení), POP (výběr) - výběr řídí registr SP (Stack Pointer) - kapacita zásobníku na programátorovi - používá INT, přerušovací systém, volání podprogramu

Typická organizace zásobníku Stack limit pouze jeden element může být dosažen, jedná se o poslední vkládaný záznam – vrchol zásobníku parametry zásobníku (počáteční adresa, velikost, limit, ...) jsou variabilní Stack Pointer – obsahuje sdresu vrcholu zásobníku, adresa je inkrementována nebo dekrementována operacemi PUSH a POP Stack Base – obsahuje počátek zásobníku ve vyhrazené oblasti Stack Limit – obsahuje adresu povoleného vrcholu zásobníku, každá operace PUSH za touto hodnotou vyvolá chybové hlášení Stack pointer Free Blok rezervovaný pro zásobník Stack base In use

proces P zavolal proces Q Růst zásobníku při dvou procedurách Top of stack pointer y2 y1 Return adress Current frame pointer Q: Previous frame pointer Top of stack pointer x2 x2 x1 x1 Return adress Return adress Current frame pointer P: P: Previous frame pointer Previous frame pointer aktivní proces P proces P zavolal proces Q

Direct Memory Access DMA - Direct Memory Access, některá zařízení mají možnost přistupovat k paměťovým přenosům dat bez účasti procesoru, při přenosu mezi pamětí a zařízením by byla velká režie, u blokových přenosů se nepřizpůsobuje rychlost – pouze u paměti, jedna adresová sběrnice – nelze použít adresaci dvou míst současně, specializovaný obvod – řadič DMA, jednoúčelové zařízení s 8 kanály u současných počítačů

Multiprogramování Paměťová hierarchie procesor provádí více programů (procesů) „současně“ pořadí provádění programů záleží na jejich prioritě, je modifikováno čekáním na nějakou událost (I/O operace) po přerušení se nemusí pokračovat v programu, který se prováděl před přerušením Paměťová hierarchie - rychlejší přístup – dražší bit větší kapacita – levnější bit větší kapacita – pomalejší přístup