Sémantika PL1 Interpretace, modely, sémantická tabla Přednáška 6 Sémantika PL1 Interpretace, modely, sémantická tabla
Pravdivost formule, interpretace, ohodnocení Otázka „je formule A pravdivá?“ má tedy smysl až tehdy, když dodáme v „interpretaci a při ohodnocení volných proměnných“. Interpretační struktura je n-tice: U, R1,...,Rn, F1,...,Fm, kde F1,...,Fm jsou funkce nad zvoleným universem diskursu přiřazené funkčním symbolům formule a R1,...,Rn jsou relace nad universem přiřazené predikátovým symbolům. Jak určíme pravdivost formule v interpretační struktuře, či zkráceně v interpretaci?
Pravdivost formule, interpretace, ohodnocení Vyhodnocujeme formuli zevnitř: nejdříve určíme prvky univerza označené termy, pak pravdivostní hodnoty atomických formulí a nakonec pravdivostní hodnotu složené formule Vyhodnocení termů: e je valuace (ohodnocení), která každé individuové proměnné přiřazuje prvek univerza: e(x) U. Ohodnocením e termů indukovaným ohodnocením proměnných e, je prvek univerza, který je induktivně definován takto: e(x) = e(x) e(f(t1, t2,...,tn)) = F(e(t1), e(t2),...,e(tn)), kde F je funkce přiřazená v dané interpretaci funkčnímu symbolu f.
Pravdivost formule, interpretace, ohodnocení Vyhodnocení pravdivostní hodnoty formule Atomické: |=I P(t1,...,tn) [e] – formule je pravdivá v Interpretaci I při ohodnocení e, jestliže platí e(t1), e(t2),...,e(tn) R, kde R je relace přiřazená symbolu P (říkáme také R je obor pravdivosti P) Výrokově-logicky složené, tj. A, A B, A B, A B, A B, dtto Výroková Logika Tvaru xA(x), xA(x): |=I xA(x)[e], jestliže pro libovolné individuum i U platí |=I A[e(x/i)], kde e(x/i) je valuace stejná jako e až na to, že přiřazuje proměnné x individuum i |=I xA(x)[e], jestliže existuje alespoň jedno individuum i U takové, že platí |=I A[e(x/i)], kde e(x/i) ...
Kvantifikátory Z definice kvantifikátorů je zřejmé, že nad konečným univerzem U = {a1,…,an}, platí následující ekvivalence formulí: x A(x) A(a1) … A(an) x A(x) A(a1) … A(an) A tedy všeobecný kvantifikátor je zobecněním konjunkce a existenční kvantifikátor je zobecněním disjunkce a zjevně platí: x A(x) x A(x), x A(x) x A(x) de Morganovy zákony
Splnitelnost a pravdivost v interpretaci Formule A je splnitelná v interpretaci I, jestliže existuje ohodnocení e proměnných takové, že platí |=I A[e]. Formule A je pravdivá v interpretaci I, značíme |=I A, jestliže pro všechna možná ohodnocení e platí, že |=I A[e]. Model formule A je interpretace I, ve které je A pravdivá (tj. pro všechna ohodnocení volných proměnných). Formule A je splnitelná, jestliže existuje interpretace I, ve které je splněna, tj. jestliže existuje interpretace I a valuace e takové, že |=I A[e]. Formule A je tautologií (logicky pravdivá), značíme |= A, jestliže je pravdivá v každé interpretaci. Formule A je kontradikcí, jestliže neexistuje interpretace I, která by formuli A splňovala, tj. neexistuje interpretace a valuace, ve které by byla A pravdivá: |I A[e].
Splnitelnost a pravdivost v interpretaci A: x P(f(x), x) B: x P(f(x), x) C: P(f(x), x) Interpretace I: U=N, f x2, P relace > Platí, že: |=I B. Formule B je v N, x2, > pravdivá. Formule A není v I pravdivá. Formule C je v N, >, x2 splněna, ale není v ní pravdivá: pro e0(x) = 0, e1(x) = 1 není 0,0, 1,1 prvkem >, ale pro e2(x) = 2, e3(x) = 3, atd., jsou dvojice 4,2, 9,3, … prvkem relace >. Formule A, C nejsou v N, x2, > pravdivé: |I A[e0], |I A[e1], |I C[e0], |I C[e1], pouze je: |=I A[e2], |=I A[e3], |=I C[e2], |=I C[e3], …
Prázdné universum ? Představme si interpretaci nad universem U = x P(x) je pravda či nepravda? dle definice kvantifikátoru je to nepravda, neboť nenajdeme žádné individuum, které splňuje P, pak je ale pravda x P(x), tj. x P(x), ale to je nepravda – spor Nebo je to pravda, protože neexistuje prvek univerza, který by neměl vlastnost P, pak ale má být také pravda x P(x), což je nepravda – spor Podobně pro x P(x) dojdeme ke sporu, ať to chápeme jako pravda či nepravda Proto volíme vždy neprázdné universum Logika pro pustý svět by byla nesmyslná
Existenční kvantifikátor + implikace ? Existuje někdo takový, že je-li to génius, pak jsou všichni géniové Tato věta nemůže být nepravdivá ! |= x (G(x) x G(x)) V každé interpretaci I bude platit: Je-li obor pravdivosti GU predikátu G roven celému universu (GU = U), pak je formule v I pravdivá, neboť je pravdivá podformule x G(x), tedy i G(x) x G(x). Je-li GU vlastní podmnožinou U (GU U), pak stačí nalézt jeden prvek (valuaci x), který neleží v GU a formule G(x) x G(x) je v I pravdivá, neboť není pravdivý antecedent G(x).
Existenční kvantifikátor + konjunkce ! Podobně formule x (P(x) Q(x)) je „skoro tautologie“. Je pravdivá v každé interpretaci I takové, že PU U, neboť pak je |=I P(x) Q(x) [e] pro e(x) PU nebo QU = U, neboť pak je |=I P(x) Q(x) pro všechny valuace e Tedy tato formule je nepravdivá pouze v takové I, kde PU = U a QU U. Proto věty typu „Některá P jsou Q“ analyzujeme jako x (P(x) Q(x)).
Všeobecný kvantifikátor + konjunkce ? Implikace ! x [P(x) Q(x)] je „skoro nesplnitelná“ ! Je nepravdivá v každé interpretaci I, ve které je PU U nebo QU U. Tedy pravdivá je pouze v takové I, kde PU = U a QU = U ! Proto věty typu „Všechna P jsou Q“ analyzujeme jako x [P(x) Q(x)] Pro všechna individua platí, že je-li to P, pak je to také Q. (Pak je PU QU – definice podmnožiny)
Splnitelnost a pravdivost v interpretaci Formule A(x) s volnou proměnnou x Je-li A(x) v I pravdivá, pak je |=I x A(x) Je-li A(x) v I splněna, pak je |=I x A(x). Formule P(x) Q(x), P(x) Q(x) s volnou proměnnou x definují průnik a sjednocení oborů pravdivosti PU, QU. Pro libovolné P, Q, PU, QU a interpretaci I tedy platí: |=I x [P(x) Q(x)] iff PU QU |=I x [P(x) Q(x)] iff PU QU |=I x [P(x) Q(x)] iff PU QU = U |=I x [P(x) Q(x)] iff PU QU
Model množiny formulí, vyplývání !!! Model množiny formulí {A1,…,An} je taková interpretace I, ve které jsou pravdivé všechny formule A1,...,An. Formule B logicky vyplývá z A1, …, An, značíme A1,…,An |= B, jestliže B je pravdivá v každém modelu množiny formulí A1,…,An. Tedy pro každou interpretaci I, ve které jsou pravdivé formule A1, …, An (|=I A1,…, |=I An) platí, že je v ní pravdivá i formule B (|=I B). „Okolnosti“ z úvodní definice vyplývání (viz přednáška 1) tedy chápeme v PL1 jako interpretace (predikátových a funkčních symbolů relacemi a funkcemi nad universem).
Vyplývání v PL1 !!! P(x) |= x P(x), avšak formule P(x) x P(x) není tautologií. Proto: A1,...,An |= Z |= (A1… An Z) platí jen pro uzavřené formule, tzv. sentence. x P(x) P(a) rovněž není tautologií, pravidlo x P(x) | P(a) nezachovává pravdivost, není ve shodě s vyplýváním. Příklad interpretace, ve které nejsou pravdivé: U = N, P sudá čísla, a 3
Sémantické ověření platnosti úsudku Úsudek je platný, pokud je závěr pravdivý ve všech modelech předpokladů. Ale, těchto modelů může být nekonečně mnoho! Přesto můžeme na základě „logického tvaru“ modelů předpokladů (tedy množinových úvah) ověřit, zda zaručují pravdivost závěru.
Sémantické ověření platnosti úsudku Příklad: Všechny opice (P) mají rády banány (Q) Judy (a) je opice Judy má ráda banány x [P(x) Q(x)] QU P(a) PU -------------------- a Q(a)
Relace a vztahy Výroky s jedno-argumentovým predikátem (charakterizujícím nějakou vlastnost) zkoumal již ve starověku Aristoteles. Teprve Gottlob Frege (zakladatel moderní logiky) však zavedl formální predikátovou logiku (s poněkud jiným jazykem, než používáme dnes) s více-argumentovými predikáty (charakterizujícími vztahy) a kvantifikátory.
Gottlob Frege 1848 – 1925 Německý matematik, logik a filosof, působil na universitě v Jeně. Zakladatel moderní logiky
Sémantické ověření platnosti úsudku Marie má ráda pouze vítěze Karel je vítěz -------------------------------------- neplatný Marie má ráda Karla x [R(m,x) V(x)], V(k) R(m,k) ? RU U U: {… <Marie, i1>, <Marie, i2>, …, <Marie, in> …} VU U: {…i1, i2, …, Karel,…, in…} Dvojice <Marie, Karel> nemusí být prvkem RU, pravdivost předpokladů to nezaručuje. Být vítězem je zde pouze nutná podmínka pro to, aby (vybíravá) Marie měla někoho ráda, ale není dostatečná.
Sémantické ověření platnosti úsudku Marie má ráda pouze vítěze Karel není vítěz ------------------------------------- platný Marie nemá ráda Karla x [R(m,x) V(x)], V(k) R(m,k) ? RU U U: {…<Marie, i1>, <Marie, i2>, <Marie, Karel>, …, <Marie, in> …} VU U: {…i1, i2, …, Karel,…, in…} Kdyby byla dvojice <Marie, Karel> prvkem RU, pak by musel být (dle první premisy) Karel prvkem VU, ale to není možné dle druhé premisy. Pravdivost předpokladů zaručuje pravdivost závěru.
Sémantické ověření správnosti úsudku Kdo zná Marii a Karla, ten Marii lituje. x [(Z(x,m) Z(x,k)) L(x,m)] Někteří nelitují Marii, ačkoliv ji znají. x [L(x,m) Z(x,m)] |= Někdo zná Marii, ale ne Karla. x [Z(x,m) Z(x,k)] Znázorníme, jaké budou obory pravdivosti predikátů Z a L, tj. relace ZU a LU, aby byly pravdivé premisy: ZU = {…, i1,m, i1,k, i2,m, i2,k,…,,m,… } 1. premisa 2. premisa LU = {…, i1,m, ...., i2,m,…........., ,m,… }
Sémantické ověření správnosti úsudku Kdo zná Marii a Karla, ten Marii lituje. x [(Z(x,m) Z(x,k)) L(x,m)] Někteří nelitují Marii, ačkoliv ji znají. x [L(x,m) Z(x,m)] |= Někdo zná Marii, ale ne Karla. x [Z(x,m) Z(x,k)] Nyní dokážeme platnost sporem: předpokládejme, že všichni, kdo jsou ve vztahu Z k m (tedy i prvek ), jsou také v Z ke k (negace závěru). ZU = {…, i1,m, i1,k, i2,m, i2,k,…,,m, ,k, … } 1. p. 2. p. 1.p. LU = {…, i1,m, ..., i2,m,…................, ,m, ,m, … } spor
Některé důležité tautologie PL1 |= xAx Ax/t term t je substituovatelný za x v A |= Ax/t xAx De Morgan |= x Ax x Ax |= x Ax x Ax Zákony distribuce kvantifikátorů: |= x [A(x) B(x)] [x A(x) x B(x)] |= x [A(x) B(x)] [x A(x) x B(x)] |= x [A(x) B(x)] [x A(x) x B(x)] |= x [A(x) B(x)] [x A(x) x B(x)] |= [xA(x) xB(x)] x [A(x) B(x)] |= x [A(x) B(x)] [x A(x) x B(x)]
Sémantické zdůvodnění: Nechť AU, BU jsou obory pravdivosti A, B x[A(x) B(x)] [xA(x) xB(x)] Je-li průnik (AU BU) = U, pak musí být jak AU, tak BU rovny celému universu U a naopak x[A(x) B(x)] [xA(x) xB(x)] Je-li sjednocení (AU BU) , pak musí být AU nebo BU neprázdné (AU nebo BU ) a naopak. |= x[A(x) B(x)] [xA(x) xB(x)] Je-li AU BU, pak je-li AU = U, je také BU = U. |= x[A(x) B(x)] [xA(x) xB(x)] Je-li AU BU, pak je-li AU , je také BU . |= x[A(x) B(x)] [xA(x) xB(x)] Je-li průnik (AU BU) , pak musí být jak AU, tak BU neprázdné (AU a BU ). |= [xA(x) xB(x)] x[A(x) B(x)] Je-li AU = U nebo BU = U, pak je také sjednocení (AU BU) = U
Některé důležité tautologie PL1 Formule A neobsahuje volně proměnnou x: |= x [A B(x)] [A xB(x)] |= x [A B(x)] [A xB(x)] |= x [B(x) A] [xB(x) A] |= x [B(x) A] [xB(x) A] |= x [A B(x)] [A xB(x)] |= x [A B(x)] [A xB(x)] |= x [A B(x)] [A xB(x)] |= x [A B(x)] [A xB(x)] Zákony komutace kvantifikátorů: |= xyA(x,y) yxA(x,y) |= xyA(x,y) yxA(x,y) |= xyA(x,y) yxA(x,y) ale ne naopak!
Sémantické zdůvodnění: Nechť AU, BU jsou obory pravdivosti A, B, x není volná v A x[A B(x)] [A xB(x)] – zřejmé x[A B(x)] [A xB(x)] – zřejmé x [B(x) A] [x B(x) A] x [B(x) A] x [B(x) A]: doplněk BU je celé universum nebo A: x B(x) A x B(x) A x B(x) A x [B(x) A] [x B(x) A] x [B(x) A] x [B(x) A]: doplněk BU je neprázdný nebo A: x B(x) A x B(x) A x B(x) A
Sémantická tabla v predikátové logice Důkazy logické pravdivosti a platnosti úsudku v predikátové logice 1. řádu
Typické úlohy Dokázat logickou pravdivost formule PL1: formule F je pravdivá ve všech interpretacích, tj. každá interpretace je jejím modelem |= F Dokázat platnost úsudku v PL1: P1, …, Pn |= Q pro uzavřené formule iff |= (P1 … Pn Q) formule Q je pravdivá ve všech modelech množiny předpokladů P1, …, Pn Co vyplývá z daných předpokladů? P1, …, Pn |= ?
Typické úlohy Jejich řešení rozborem (nekonečné) množiny modelů je obtížné, sémantické důkazy jsou pracné Proto hledáme jiné metody Jednou z nich je metoda sémantických tabel Obdoba, zobecnění stejné metody ve výrokové logice Tedy převod na disjunktivní / konjunktivní normální formy
Sémantická tabla v PL1 VL – důkaz logické pravdivosti. Přímý důkaz – použijeme konjunktivní normální formu Nepřímý důkaz – disjunktivní normální formu Aplikaci metod VL brání to, že formule může být uzavřená kvantifikátory. Jak se jich zbavit? Použijeme pravidla: x A(x) | A(x / t), kde t je term substituovatelný za x ve formuli A, nejčastěji t = x (x)A(x) | A(a), kde a je vhodná konstanta (dosud v důkazovém postupu nepoužita)
Pravidla pro odstranění kvantifikátorů x A(x) | A(x/t), term t substituovatelný za x Je-li obor pravdivosti AU = U, pak prvek e*(t) leží v AU Zachovává pravdivost, OK (x)A(x) | A(a), kde a je vhodná konstanta Je-li obor pravdivosti AU , pak prvek e*(a) nemusí ležet v AU Nezachovává pravdivost !! x (y) B(x,y) | B(a, b), kde a, b jsou vhodné konstanty Jestliže ke každému x existuje y takové, že dvojice <x,y> leží v BU, nemusí tam ležet právě dvojice <a, b> Odstranění existenčního kvantifikátoru však zachovává splnitelnost: je možno interpretovat konstanty a, b tak, aby byla formule na pravé straně pravdivá, pokud je pravdivá formule vlevo, proto musíme použít důkaz sporem, tj. disjunktivní tabla
Sémantická tabla v PL1 – disjunktivní Příklad. Důkaz logické pravdivosti formule: |= x [P(x) Q(x)] [x P(x) x Q(x)] Důkaz sporem (nesplnitelnosti formule): x [P(x) Q(x)] x P(x) x Q(x) (pořadí!) x [P(x) Q(x)], P(a) Q(a), P(a), Q(a) x [P(x) Q(x)], P(a), P(a), Q(a) x [P(x) Q(x)], Q(a), P(a), Q(a) + + Obě větve se uzavřely, jsou nesplnitelné, původní f. je Tautologie 2. 3. 1.
Metoda disjunktivního tabla |=? x [P(x) Q(x)] [x P(x) x Q(x)] Znegujeme: x [P(x) Q(x)] x P(x) x Q(x) x [P(x) Q(x)], P(a), Q(b) 1.odstranění - různé konst. ! P(a) Q(a), P(b) Q(b), P(a), Q(b) 2. odstranění (tj. i pro a,b) P(a), P(b) Q(b), P(a), Q(b) Q(a), P(b) Q(b), P(a), Q(b) P(a), P(b), P(a), Q(b) P(a), Q(b), P(a), Q(b) Q(a), P(b), P(a), Q(b) Q(a), Q(b), P(a), Q(b) Formule není logicky pravdivá, 3. větev není uzavřená
Tablo může být nekonečné F: x y P(x,y) x P(x,x) x y z ([P(x,y) P(y,z)] P(x,z)) Proměnná x je kvantifikována všeobecným kvantifikátorem Musíme tedy „zkoušet všechna x“: a1, a2, a3, … Pro y musíme volit vždy jinou konstantu: P(a1, a2), P(a1, a1) P(a2, a3), P(a2, a2), P(a2, a1) P(a3, a4), P(a3, a3), P(a3, a2) P(a4, a5), P(a4, a4), P(a4, a3) … Problém logické pravdivosti není v PL1 rozhodnutelný
Tablo může být nekonečné F: x y P(x,y) x P(x,x) x y z ([P(x,y) P(y,z)] P(x,z)) Jaká je formule F? Je to splnitelná, kontradikce, či logicky pravdivá? Zkusme najít model: U = N PU = relace < (ostře menší) 1 2 3 4 5 ... Je splnitelná Může mít formule F konečný model? U = {a1, a2, a3, ... ? } K a1 musí existovat prvek a2 takový, že P(a1, a2), a2 a1 K a2 musí existovat prvek a3 takový, že P(a2, a3), a3 a2, ale také a3 a1 jinak by bylo P(a1, a2) P(a2, a1), tedy P(a1, a1). K a3 musí existovat prvek a4 takový, že P(a3, a4), a4 a3, ale také a4 a2 jinak by bylo P(a2, a3) P(a3, a2), tedy P(a2, a2). Atd. do nekonečna
Platnost úsudku - sporem x [P(x) Q(x)] x Q(x) |= x P(x) x [P(x) Q(x)], x Q(x), x P(x) – sporná? x [P(x) Q(x)], Q(a), x P(x) x [P(x) Q(x)], x P(x), [P(a) Q(a)], Q(a), P(a) P(a), Q(a), P(a) Q(a), Q(a), P(a) + + Obě větve se uzavřely, množina předpokladů a negovaný závěr je sporná, tedy úsudek je platný
Platnost úsudku (sporem) x [P(x) Q(x)] x Q(x) |= x P(x) Žádná velryba není ryba. Ryby existují. -------------------------------------------- Některá individua nejsou velryby. Množina tvrzení: {Žádná velryba není ryba, ale ryby existují, všechno jsou velryby} sporná, úsudek je platný
Ověření nesplnitelnosti Jistý holič holí právě ty, kdo se neholí sami Holí tento holič sám sebe? x y [H(y,y) H(x,y)] |= ? H(y,y) H(a,y), H(y,y) H(a,y) – odstranění H(a,a) H(a,a), H(a,a) H(a,a) – odstranění H(a,a), H(a,a) H(a,a), H(a,a), H(a,a) H(a,a) H(a,a), H(a,a) H(a,a), H(a,a) … + První věta je sporná, plyne z ní cokoliv. Tedy, takový holič prostě neexistuje.
Shrnutí – sémantická tabla v PL1 Sémantická tabla používáme pro nepřímý důkaz sporem převodem do disjunktivní normální formy (tj. větvení znamená disjunkci, čárka konjunkci) Problémem jsou uzavřené formule s kvantifikátory, musíme se kvantifikátorů nějak zbavit Nejprve odstraníme existenční kvantifikátory tak, že proměnnou (která není v rozsahu všeobecného kvantifikátoru) nahradíme novou konstantou, která se ještě v jazyce nevyskytovala Pak odstraňujeme všeobecné kvantifikátory tak, že proměnnou nahrazujeme postupně všemi konstantami Pokud je existenčně vázaná proměnná x v dosahu kvantifikátoru všeobecného (přes y), musíme za y postupně zkoušet dosazovat všechny konstanty a za proměnnou x dosazovat vždy novou konstantu Pokud se tablo uzavře, je formule či množina formulí sporná
Příklady na sémantická tabla |= xy P(x,y) yx P(x,y) negace: xy P(x,y) yx P(x,y) yP(a,y), xP(x,b) x/a, y/b (pro všechna, tedy i pro a, b) P(a,b), P(a,b) +
Příklady na sémantická tabla |= [x P(x) x Q(x)] x [P(x) Q(x)] negace: [x P(x) x Q(x)] x [P(x) Q(x)] x P(x), P(a), Q(a) x Q(x), P(a), Q(a) xP(x),P(a),P(a),Q(a) xQ(x),Q(a),P(a),Q(a) + +
Gottlob Frege Friedrich Ludwig Gottlob Frege (b. 1848, d. 1925) was a German mathematician, logician, and philosopher who worked at the University of Jena. Frege essentially reconceived the discipline of logic by constructing a formal system which, in effect, constituted the first ‘predicate calculus’. In this formal system, Frege developed an analysis of quantified statements and formalized the notion of a ‘proof’ in terms that are still accepted today. Frege then demonstrated that one could use his system to resolve theoretical mathematical statements in terms of simpler logical and mathematical notions. Bertrand Russell showed that the axioms that Frege later added to his system, in the attempt to derive significant parts of mathematics from logic, proved to be inconsistent. Nevertheless, his definitions (of the predecessor relation and of the concept of natural number) and methods (for deriving the axioms of number theory) constituted a significant advance. To ground his views about the relationship of logic and mathematics, Frege conceived a comprehensive philosophy of language that many philosophers still find insightful. However, his lifelong project, of showing that mathematics was reducible to logic, was not successful. Stanford Encyclopedia of Philosophy http://plato.stanford.edu/entries/frege/
Bertrand Russell 1872-1970 Britský filosof, logik, esejista
Bertrand Russell Bertrand Arthur William Russell (b.1872 - d.1970) was a British philosopher, logician, essayist, and social critic, best known for his work in mathematical logic and analytic philosophy. His most influential contributions include his defense of logicism (the view that mathematics is in some important sense reducible to logic), and his theories of definite descriptions and logical atomism. Along with G.E. Moore, Russell is generally recognized as one of the founders of analytic philosophy. Along with Kurt Gödel, he is also regularly credited with being one of the two most important logicians of the twentieth century.
Kurt Gödel (1906-Brno, 1978-Princeton) Největší logik 20. století, přítel A. Einsteina, proslavil se větami o neúplnosti teorie aritmetiky
Russell's Paradox Russell's paradox is the most famous of the logical or set-theoretical paradoxes. The paradox arises within naive set theory by considering the set of all sets that are not members of themselves. Such a set appears to be a member of itself if and only if it is not a member of itself, hence the paradox. http://plato.stanford.edu/entries/russell-paradox/
Russell's Paradox Some sets, such as the set of all teacups, are not members of themselves. Other sets, such as the set of all non-teacups, are members of themselves. Call the set of all sets that are not members of themselves "R." If R is a member of itself, then by definition it must not be a member of itself. Similarly, if R is not a member of itself, then by definition it must be a member of itself. Discovered by Bertrand Russell in 1901, the paradox has prompted much work in logic, set theory and the philosophy and foundations of mathematics.
Russell's Paradox R – množina všech normálních množin, které nejsou prvky sebe sama Otázka: Je R R? Je R normální? vede ke sporu. Symbolicky: xR (xx) – definice množiny R Položená otázka Je R R? vede ke sporné formuli (kontradikci): RR RR, neboť: Odpověď Ano – R není normální (RR), pak dle definice množiny R nemá být R prvkem R, tj. RR Odpověď Ne – R je normální (RR), pak je ale dle definice RR (R je množina všech normálních množin)
Russell wrote to Gottlob Frege with news of his paradox on June 16, 1902. The paradox was of significance to Frege's logical work since, in effect, it showed that the axioms Frege was using to formalize his logic were inconsistent. Specifically, Frege's Rule V, which states that two sets are equal if and only if their corresponding functions coincide in values for all possible arguments, requires that an expression such as f(x) be considered both a function of the argument x and a function of the argument f. In effect, it was this ambiguity that allowed Russell to construct R in such a way that it could both be and not be a member of itself.
Russell's Paradox Russell's letter arrived just as the second volume of Frege's Grundgesetze der Arithmetik (The Basic Laws of Arithmetic, 1893, 1903) was in press. Immediately appreciating the difficulty the paradox posed, Frege added to the Grundgesetze a hastily composed appendix discussing Russell's discovery. In the appendix Frege observes that the consequences of Russell's paradox are not immediately clear. For example, "Is it always permissible to speak of the extension of a concept, of a class? And if not, how do we recognize the exceptional cases? Can we always infer from the extension of one concept's coinciding with that of a second, that every object which falls under the first concept also falls under the second? These are the questions," Frege notes, "raised by Mr Russell's communication." Because of these worries, Frege eventually felt forced to abandon many of his views about logic and mathematics. Of course, Russell also was concerned about the contradiction. Upon learning that Frege agreed with him about the significance of the result, he immediately began writing an appendix for his own soon-to-be-released Principles of Mathematics. Entitled "Appendix B: The Doctrine of Types," the appendix represents Russell's first detailed attempt at providing a principled method for avoiding what was soon to become known as "Russell's paradox."
Russell's Paradox The significance of Russell's paradox can be seen once it is realized that, using classical logic, all sentences follow from a contradiction. For example, assuming both P and ~P, any arbitrary proposition, Q, can be proved as follows: from P we obtain P Q by the rule of Addition; then from P Q and ~P we obtain Q by the rule of Disjunctive Syllogism. Because of this, and because set theory underlies all branches of mathematics, many people began to worry that, if set theory was inconsistent, no mathematical proof could be trusted completely. Russell's paradox ultimately stems from the idea that any coherent condition may be used to determine a set. As a result, most attempts at resolving the paradox have concentrated on various ways of restricting the principles governing set existence found within naive set theory, particularly the so-called Comprehension (or Abstraction) axiom. This axiom in effect states that any propositional function, P(x), containing x as a free variable can be used to determine a set. In other words, corresponding to every propositional function, P(x), there will exist a set whose members are exactly those things, x, that have property P. It is now generally, although not universally, agreed that such an axiom must either be abandoned or modified. Russell's own response to the paradox was his aptly named theory of types. Recognizing that self-reference lies at the heart of the paradox, Russell's basic idea is that we can avoid commitment to R (the set of all sets that are not members of themselves) by arranging all sentences (or, equivalently, all propositional functions) into a hierarchy. The lowest level of this hierarchy will consist of sentences about individuals. The next lowest level will consist of sentences about sets of individuals. The next lowest level will consist of sentences about sets of sets of individuals, and so on. It is then possible to refer to all objects for which a given condition (or predicate) holds only if they are all at the same level or of the same "type."
Russell’s paradox – 3 solutions Russell's own response to the paradox was his aptly named theory of types. Recognizing that self-reference lies at the heart of the paradox, Russell's basic idea is that we can avoid commitment to R (the set of all sets that are not members of themselves) by arranging all sentences (or, equivalently, all propositional functions) into a hierarchy. The lowest level of this hierarchy will consist of sentences about individuals. The next lowest level will consist of sentences about sets of individuals. The next lowest level will consist of sentences about sets of sets of individuals, and so on. It is then possible to refer to all objects for which a given condition (or predicate) holds only if they are all at the same level or of the same "type." This solution to Russell's paradox is motivated in large part by the so-called vicious circle principle, a principle which, in effect, states that no propositional function can be defined prior to specifying the function's range. In other words, before a function can be defined, one first has to specify exactly those objects to which the function will apply. (For example, before defining the predicate "is a prime number," one first needs to define the range of objects that this predicate might be said to satisfy, namely the set, N, of natural numbers.) From this it follows that no function's range will ever be able to include any object defined in terms of the function itself. As a result, propositional functions (along with their corresponding propositions) will end up being arranged in a hierarchy of exactly the kind Russell proposes.
Russell’s paradox – 3 solutions Although Russell first introduced his theory of types in his 1903 Principles of Mathematics, type theory found its mature expression five years later in his 1908 article, "Mathematical Logic as Based on the Theory of Types," and in the monumental work he co-authored with Alfred North Whitehead, Principia Mathematica (1910, 1912, 1913). Russell's type theory thus appears in two versions: the "simple theory" of 1903 and the "ramified theory" of 1908. Both versions have been criticized for being too ad hoc to eliminate the paradox successfully. In addition, even if type theory is successful in eliminating Russell's paradox, it is likely to be ineffective at resolving other, unrelated paradoxes. Other responses to Russell's paradox have included those of David Hilbert and the formalists (whose basic idea was to allow the use of only finite, well-defined and constructible objects, together with rules of inference deemed to be absolutely certain), and of Luitzen Brouwer and the intuitionists (whose basic idea was that one cannot assert the existence of a mathematical object unless one can also indicate how to go about constructing it). Yet a fourth response was embodied in Ernst Zermelo's 1908 axiomatization of set theory. Zermelo's axioms were designed to resolve Russell's paradox by again restricting the Comprehension axiom in a manner not dissimilar to that proposed by Russell. ZF and ZFC (i.e., ZF supplemented by the Axiom of Choice), the two axiomatizations generally used today, are modifications of Zermelo's theory developed primarily by Abraham Fraenkel.