Obsah prezentace Náhodná proměnná Rozdělení náhodné proměnné.

Slides:



Advertisements
Podobné prezentace
Základní typy rozdělení pravděpodobnosti diskrétní náhodné veličiny
Advertisements

VÝPOČET OC.
ZÁKLADY PRAVDĚPODOBNOSTI
GENEROVÁNÍ PSEUDONÁHODNÝCH ČÍSEL
Statistická indukce Teorie odhadu.
Limitní věty.
NORMOVANÉ NORMÁLNÍ ROZDĚLENÍ
Odhady parametrů základního souboru
HISTORICKÁ DATA Jsou k dispozici: vyrovnání nejvhodnějším typem rozdělení (Batch Fit) Nejsou k dispozici: využití expertních názorů (subjektivní pravděpodobnosti)
Diskrétní rozdělení a jejich použití
Regresní analýza a korelační analýza
Pravděpodobnost a statistika opakování základních pojmů
Náhodná veličina.
25. října 2004Statistika (D360P03Z) 4. předn.1 Statistika (D360P03Z) akademický rok 2004/2005 doc. RNDr. Karel Zvára, CSc. KPMS MFF UK
Obsah statistiky Jana Zvárová
Matematický aparát v teorii informace Základy teorie pravděpodobnosti
Vybraná rozdělení spojité náhodné veličiny
Generování náhodných veličin (2) Spojitá rozdělení
Nechť (, , P) je pravděpodobnostní prostor:
Aplikovaná statistika
Některá diskrétní a spojitá rozdělení náhodné veličiny.
Diskrétní rozdělení Karel Zvára 1.
Náhodný jev A E na statistickém experimentu E - je určen vybranou množinou výsledků experimentu: výsledku experimentu lze přiřadit číslo, náhodnou proměnnou.
Charakteristické rysy a typy jednorozměrného rozdělení četností.
Data s diskrétním rozdělením
Statistická analýza únavových zkoušek
POČET PRAVDĚPODOBNOSTI
Generování náhodných veličin Diskrétní a spojitá rozdělení Simulační modely ek.procesů 4.přednáška.
Vybraná rozdělení spojité náhodné veličiny
Ekonomické modelování Analýza podnikových procesů Statistická simulace je vhodný nástroj pro analýzu stochastických podnikových procesů (výrobní, obchodní,
Experimentální fyzika I. 2
ZÁKLADY TEORIE PRAVDĚPODOBNOSTI
Základy zpracování geologických dat
Náhodné výběry a jejich zpracování Motto: Chceme-li vědět, jak chutná víno v sudu, nemusíme vypít celý sud. Stačí jenom malý doušek a víme na čem jsme.
2. Vybrané základní pojmy matematické statistiky
Základy matematické statistiky. Nechť je dána náhodná veličina X (“věk žadatele o hypotéku“) X je definována rozdělením pravděpodobností, s nimiž nastanou.
Distribuční funkce diskrétní náhodná proměnná spojitá náhodná proměnná
(Popis náhodné veličiny)
Molekulová fyzika 3. přednáška „Statistický přístup jako jediná funkční strategie kinetické teorie“
Poissonovo rozdělení diskrétní náhodné veličiny
Měřické chyby – nejistoty měření –. Zkoumané (měřené) předměty či jevy nazýváme objekty Na každém objektu je nutno definovat jeho znaky. Mnoho znaků má.
Aritmetický průměr - střední hodnota
IV..
Náhodná veličina. Nechť (, , P) je pravděpodobnostní prostor:
Základy statistiky Základní pojmy. Základy statistiky Statistiku můžeme chápat jako činnost - získávání stat. údajů, jejich zpracování a vyhodnocení jako.
Popisné charakteristiky statistických souborů. ZS - přesné parametry (nelze je měřením zjistit) VS - výběrové charakteristiky (slouží jako odhad skutečných.
POZNÁMKA: Pokud chcete změnit obrázek na tomto snímku, vyberte obrázek a odstraňte ho. Potom klikněte na ikonu Obrázek v zástupném textu a vložte vlastní.
Pravděpodobnost Přednáška č.2. Deterministický a náhodný děj Každý děj probíhá za uskutečnění jistého souboru podmínek Deterministický děj-děj, ve kterém.
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) a  x  b distribuční.
Molekulová fyzika 2. Sada pomocných snímků „Teplota“
POČET PRAVDĚPODOBNOSTI
Simulace podnikových procesů
Některá rozdělení náhodných veličin
Spojitá náhodná veličina
Základy statistické indukce
Signály a jejich vyhodnocení
Statistika - opakovací test k procvičení
Základy zpracování geologických dat Rozdělení pravděpodobnosti
Spojitá a kategoriální data Základní popisné statistiky
Typy proměnných Kvalitativní/kategorická binární - ano/ne
Vnitřní energie plynu, ekvipartiční teorém
Statistika a výpočetní technika
Rozdělení pravděpodobnosti
Plánování přesnosti měření v IG Úvod – základní nástroje TCHAVP
Poissonovo rozdělení diskrétní náhodné veličiny
Autor: Honnerová Helena
Základy statistiky.
Základy popisné statistiky
Náhodné výběry a jejich zpracování
Distribuční funkce diskrétní náhodná proměnná spojitá náhodná proměnná
Transkript prezentace:

ŘÍZENÍ JAKOSTI A SPOLEHLIVOSTI Pavel Fuchs David Vališ Josef Chudoba Jan Kamenický Jaroslav Zajíček

Obsah prezentace Náhodná proměnná Rozdělení náhodné proměnné

Náhodná proměnná Hodnocené vlastnosti - většinou pravděpodobnostní, resp. statistický charakter Ukazatele spolehlivosti (kvantitativní míry vlastností) - úzce spjaty s rozdělením pravděpodobnosti náhodné proměnné. Náhodný pokus: Takový pokus, které je možný neomezeně mnohokrát opakovat, ale jeho výsledek není jednoznačně předurčen podmínkami pokusu a náhodně se mění přesto, že podmínky pokusu jsou zachovány. Náhodný jev: Kterýkoliv jev z množiny všech možných výsledků náhodného pokusu. Výsledky náhodného pokusu musí být vzájemně neslučitelné (nemůže současně nastat výskyt více než jednoho jevu) a úplné (musí nastat právě jeden z nich). Tyto možné výsledky náhodného pokusu jsou nazývány elementárními jevy.

Pravděpodobnost: Zjednodušeně míra relativní četnosti náhodného jevu v případě provedení nekonečného počtu náhodných pokusů (jejichž výsledkem může výskyt uvedeného náhodného jevu). Objektivní možnost nastoupení náhodného jevu lze vyjádřit číslem, které nazýváme pravděpodobností. kde n(A) je počet výskytů jevu A v n pokusech. Náhodná proměnná: Zjednodušeně taková proměnná, jejíž každá hodnota je jednoznačně určena výsledkem náhodného pokusu a která současně může nabývat libovolné hodnoty z definovaného oboru hodnot, vždy však pouze s určitou pravděpodobností. Diskrétní náhodná proměnná X je taková náhodná proměnná, která může nabývat diskrétních hodnot z nějaké konečné, nebo spočetné množiny {x1, x2, x3, …}. Například počet porouchaných součástek za danou dobu provozu z celkového počtu n součástek může nabývat hodnot 1, 2, 3, …n. Spojitá náhodná proměnná X je taková náhodná proměnná, která může nabývat všech hodnot z určitého intervalu. Například doba bezporuchového provozu systému X může nabývat hodnot x  (0, ). Tuto pravděpodobnost lze vyjádřit jistým zákonem rozdělení pravděpodobnosti popsaným např. distribuční funkcí, hustotou pravděpodobnosti apod.

Zákon rozdělení pravděpodobnosti: Vztah, který dovoluje stanovit, s jakou pravděpodobností lze při realizaci pokusu očekávat nastoupení daného jevu (tj. přiřadit hodnotám náhodné proměnné odpovídající pravděpodobnosti). K popisu rozdělení náhodné proměnné nejčastěji slouží: distribuční funkce hustota pravděpodobnosti (resp. pravděpodobnostní funkce u diskrétní náhodné proměnné) intenzita náhodného jevu

Distribuční funkce - spojitá náhodná proměnná 0  F(x)  1, neklesající a zleva spojitá funkce, P(x1  X  x2) = F(x2) - F(x1) ,

Hustota pravděpodobnosti - spojitá náhodná proměnná , přičemž , ,

Pravděpodobnostní funkce - pro diskrétní náhodnou proměnnou P(X=xi) > 0 , přičemž

Distribuční funkce - diskrétní náhodná proměnná

Intenzita náhodného jevu Intenzita jevu - proměnné konstantní nebo proměnná. Ve spolehlivosti je velmi často užívaná intenzita poruch. Funkce bezporuchovosti (spolehlivosti) Ve spolehlivosti se často používá doplněk (komplement) k distribuční funkci, který nazýváme funkce spolehlivosti (bezporuchovosti), protože vyjadřuje pravděpodobnost toho, že jev (např. porucha) do okamžiku x nenastane:

Doplněk (komplement) k distribuční funkci - vyjadřuje pravděpodobnost toho, že jev (např. porucha) do okamžiku x nenastane:

Rozdělení náhodné proměnné Popis rozdělení pravděpodobnosti náhodné proměnné distribuční funkce F(x) hustota pravděpodobnosti f(x) intenzita náhodného jevu h(x) číselné charakteristiky charakteristiky polohy (např. střední hodnota) charakteristiky variability (např. rozptyl a směrodatná odchylka) kvantily (např. medián a modus)

Vanová křivka spolehlivosti Období časných poruch (neodhalené nedostatky v konstrukci, výrobě a montáži) - intenzita poruch klesá, bezporuchovost se zlepšuje. Období konstantní intenzity poruch - hodnota intenzity poruch konstantní. Poruchy v tomto období jsou způsobovány pouze náhodným mechanismem. Období dožívání - intenzita poruch s časem roste v důsledku trvale narůstajícího působení mechanismů stárnutí, opotřebení a koroze. Použitím vhodných zákonů rozdělení náhodné proměnné lze popsat zákonitosti poruchovosti zařízení v jednotlivých etapách jeho života.

Základní typy (zákony) rozdělení pravděpodobnosti náhodné proměnné Nejčastěji se ve spolehlivosti pro popis rozdělení pravděpodobnosti náhodné proměnné používají tyto typy rozdělení: Spojitá náhodná proměnná normální (Gaussovo) rozdělení logaritmicko-normální rozdělení exponenciální rozdělení Weibullovo rozdělení Diskrétní náhodná proměnná binomické rozdělení Poissonovo rozdělení

Normální (Gaussovo) rozdělení symetrické kolem střední hodnoty - parametr polohy rozdělení (střední hodnota náhodné proměnné) - parametr tvaru rozdělení (směrodatná odchylka) Použití Popis doby technického života neopravovaných objektů, kde se projevuje postupná degradace a poměr / , je malý. Jde například o elektrická zařízení se žhavícím vláknem - jako jsou žárovky, topné spirály apod. Popis doby opravy. Aproximace k některým jiným rozdělením..

Exponenciální rozdělení - parametr polohy rozdělení (střední hodnota náhodné proměnné) c - parametr posunutí počátku rozdělení, v praxi se nejčastěji používá c = 0 intenzita poruch hustota pravděpodobnosti distribuční funkce doplněk distribuční funkce (funkce spolehlivosti / bezporuchovosti) za předpokladu, že <<1 Použití Popis poruchovosti objektů s konstantní intenzitou poruch (neprojevuje se vliv postupné degradace součástí)

Weibullovo rozdělení - parametr polohy rozdělení - parametr tvaru rozdělení c - parametr posunutí počátku rozdělení, v praxi se nejčastěji používá c = 0 Použití Popis dob spojených s poruchami a dob nápravné údržby. Parametr > 1 - popis bezporuchovosti a životnosti objektů, u kterých se výrazně projevuje vliv opotřebení, únavy, koroze a dalších degradačních procesů. Parametr < 1 - popis bezporuchovosti v počátečních fázích provozu, kdy se projevují výrobní vady. Parametr = 1 - exponenciální rozdělení (zvláštní případ Weibullova rozdělení).

Binomické rozdělení n - celkový počet pokusů p - pravděpodobnost nastoupení sledovaného jevu pravděpodobnostní funkce Pravděpodobnost, že sledovaný jev při n pokusech nastane právě x - krát, když pravdě-podobnost nastoupení jevu je rovna p. distribuční funkce Pravděpodobnost, že sledovaný jev při n pokusech nastane nejvýše x - krát.

Poissonovo rozdělení m - střední hodnota náhodné proměnné m = .t při popisu výskytu určitého jevu během dané doby .... intenzita jevu t .... doba pozorování pravděpodobnostní funkce Pravděpodobnost, s jakou se určitý jev s intenzitou vyskytne během doby t právě x - krát. distribuční funkce Pravděpodobnost, že určitý jev s intenzitou se vyskytne během doby t nejvýše x - krát.

Poděkování Tento text pro výuku byl vytvořen s podporou ESF v rámci projektu: „Inovace a realizace bakalářského oboru Informatika a logistika v souladu s požadavky průmyslu a veřejné správy“, číslo projektu CZ.04.1.03/3.2.15.3/0442.

Děkuji Vám za pozornost.