Přednášky z lékařské biofyziky Masarykova univerzita v Brně - Biofyzikální ústav Lékařské fakulty Ilya Prigogine 1917 - 2003 Termodynamika a život.

Slides:



Advertisements
Podobné prezentace
Tenze páry nad kapalinou a roztokem
Advertisements

PRŮBĚH CHEMICKÉ REAKCE
Chemická termodynamika I
V O D A Biofyzikální vlastnosti znamenají možnost života na Zemi.
Faktory ovlivňující velikost difuze
Přednášky z lékařské biofyziky pro obor: Nutriční terapeut
Ideální plyn velikost a hmota částic je vůči jeho objemu zanedbatelná, mezi částicemi nejsou žádné interakce, žádná atrakce ani repulse. Částice ideálního.
IDEÁLNÍ PLYN Stavová rovnice.
Entropie v nerovnovážných soustavách
Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv. atomové hmotnostní jednotky u: Dohodou bylo stanoveno,
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Aktivita č.4: Biologie pod mikroskopem
Difuze Neuspořádaný tepelný pohyb atomů a iontů Podstata difuze
Základy termodynamiky
Molekulová fyzika a termika
Fázové rovnováhy.
FS kombinované Chemické reakce
Tepelné vlastnosti dřeva
Fugacitní modely 3. úrovně (Level III)
Zkoumá rychlost reakce a faktory, které reakci ovlivňují
Reakční rychlost Rychlost chemické reakce
Chemické reakce Chemická reakce je děj, při kterém se výchozí látky mění na jiné látky zánikem původních a vznikem nových vazeb Každá změna ve vazebných.
Kinetika chemických reakcí (učebnice str. 97 – 109)
Oxidačně-redukční reakce
KINETIKA CHEMICKÝCH REAKCÍ
Termodynamika a chemická kinetika
Kinetika chemických reakcí
SKUPENSKÉ STAVY HMOTY Teze přednášky.
Mechanické vlastnosti, koligativní vlastnosti a transportní jevy
Fyzikálně-chemické aspekty procesů v prostředí
Stacionární a nestacionární difuse.
TLAK PLYNU Z HLEDISKA MOLEKULOVÉ FYZIKY.
Termodynamika – principy, které vládnou přírodě JAMES WATT Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy.
Termodynamika Termodynamika studuje fyzikální a chemické děje v systémech (soustavách) z hlediska energie Proč některé reakce produkují teplo (NaOH + H2O)
Biofyzika buňky, biomembrány
STAVOVÁ ROVNICE IDEÁLNÍHO PLYNU.
FYZIOLOGIE BUŇKY PŘÍJEM A VÝDEJ LÁTEK.
„Svět se skládá z atomů“
Schéma rovnovážného modelu Environmental Compartments
Udávání hmotností a počtu částic v chemii
Biochemie Úvod do biochemie.
Brownův pohyb, difuze, osmóza
Chemie anorganických materiálů I.
okolí systém izolovaný Podle komunikace s okolím: 1.
Tenze páry nad kapalinou a roztokem
Membrány a membránový transport
Biofyzika dýchání. Spirometrie
Adsorpce plynů a adsorpce z roztoků na pevné materiály
VIII. Chemické reakce : KINETIKA
Struktura a vlastnosti plynů
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorMgr. Radomír Tomášů Název šablonyIII/2.
5.4. Účinné průřezy tepelných neutronů
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Termodynamika (kapitola 6.1.) Rozhoduje pouze počáteční a konečný stav Nezávisí na mechanismu změny Předpověď směru, samovolnosti a rozsahu reakcí Nepočítá.
Vlastnosti plynů a kapalin
Transport látek, osmóza
Termodynamika Základní pojmy: TeploQ (J) - forma energie Termodynamická teplotaT (K) 0K= -273,16°C - nejnižší možná teplota (ustane tepelný pohyb) EntropieS.
Ideální plyn velikost a hmota částic je vůči jeho objemu zanedbatelná, mezi částicemi nejsou žádné interakce, žádná atrakce ani repulse. Částice ideálního.
Přednášky z lékařské biofyziky 2011/2012 pro obor: Nutriční terapeut
Fyzika pro lékařské a přírodovědné obory Ing. Petr Vácha ZS – Termika, molekulová fyzika.
Název vzdělávacího materiálu: Rovnováhy Číslo vzdělávacího materiálu: ICT9/18 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název sady.
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Příjem a výdej látek buňkou
Tepelný pohyb částic VY_32_INOVACE_11_212
Základní pojmy.
Moderní poznatky ve fyzice Některé jevy moderní termodynamiky
Přednášky z lékařské biofyziky Masarykova univerzita v Brně – Biofyzikální centrum JAMES WATT Termodynamika.
Přednášky z lékařské biofyziky Masarykova univerzita v Brně - Biofyzikální centrum Ilya Prigogine * 1917 Termodynamika II.
Adsorpce plynů a adsorpce z roztoků na pevné materiály
Kinetika chemických reakcí (učebnice str. 97 – 109)
Transkript prezentace:

Přednášky z lékařské biofyziky Masarykova univerzita v Brně - Biofyzikální ústav Lékařské fakulty Ilya Prigogine 1917 - 2003 Termodynamika a život

Obsah přednášky Základní pojmy nerovnovážné termodynamiky ve vztahu k živým systémům Difuze Osmóza a osmotický tlak

Základní pojmy nerovnovážné termodynamiky živých systémů V nerovnovážných systémech existuje vnitřní zdroj entropie. Množství entropie vyprodukované v jednotkovém objemu za jednotku času se nazývá produkce entropie s.

Prigoginův princip Pro stavy nepříliš vzdálené od tmd. rovnováhy platí Prigoginův princip: Při neměnících se vnějších podmínkách otevřený systém spontánně spěje do stavu s minimální produkcí entropie. Tento stav se nazývá stacionární stav (stav dynamické rovnováhy, resp. homeostáza v biologii).

Rozdíl mezi rovnovážným a stacionárním stavem Lze udržet stav s rozdílnými teplotami v izolovaném systému?

Rozdíl mezi rovnovážným a stacionárním stavem Rozdíl teplot lze udržet pouze v otevřeném systému s tepelnou pumpou, která spotřebovává energii.

Rozdíl mezi rovnovážným a stacionárním stavem Iontová pumpa udržuje konstantní rozdíl v koncentracích iontů a spotřebovává energii.

Fluktuace a poruchové síly Zobecněný Le Chatelierův princip Fluktuace - malé odchylky od rovnovážného nebo stacionárního stavu – mají vnitřní příčinu v náhodných procesech. Podobně se projevují následky působení poruchových sil – malých zásahů do systému z vnějšku. Zobecněný le Chatelierův princip: V blízkosti stacionárního stavu vyvolávají fluktuace či poruchové síly takové toky látky a energie, že se jimi tyto fluktuace (účinky poruchových sil) likvidují. Kritický neboli bifurkační bod

Disipativní struktury Uspořádané nerovnovážné časově-prostorové struktury se nazývají disipativní struktury. Na disipativní struktury nelze aplikovat Boltzmannův vztah. Podle Prigogina vznikají jako důsledek fluktuace a jsou stabilizovány výměnou energie s okolím. Disipativní struktury patří k problémům řešeným nelineární nerovnovážnou termodynamikou. Mohou vzniknout pouze v podmínkách dostatečně vzdálených od rovnováhy při dostatečném toku energie a látky. („Bénardova nestabilita“)

Autokatalytické reakce Autokatalytickou reakci lze zapsat pomocí chemické rovnice: nA + X ¬¾® 2X + (n - 1)A, přičemž může následovat reakce: X ¬¾® F V autokatalytické reakci vzniká z látky A za přítomnosti látky X opět látka X. Látka X tedy působí jako katalyzátor při svém vzniku. Při dostatečné zásobě látky A roste množství látky X exponenciálně. F může být produktem vznikajícím z látky X. Autokatalytickou reakcí svého druhu je i replikace DNA. Ke stejnému výsledku totiž může vést komplex “obyčejných” chemických reakcí: Komplex normálních chemických reakcí se může vnějškově projevovat jako jedna nebo několik (spřažených) autokatalytických reakcí. Replikace DNA je komplex metabolických pochodů, jehož výsledkem je vznik kopie molekuly, nesoucí genetickou informaci.

Reakce Bělousova-Žabotinského http://www.jkrieger.de/bzr/2_4_versuch_raeuml.html#2_4

Příklady termodynamického přístupu k řešení problémů: Rovnovážná termodynamika: Osmóza a osmotický tlak Nerovnovážná termodynamika: Difuze

Difuze jako nevratný proces Transportní děj - projev snahy termodynamického systému o dosažení rovnovážného stavu, v němž jsou v jeho objemu vyrovnány koncentrace všech jeho složek. Tok difundující látky je konstantní, když se nemění výrazně její koncentrace na obou stranách membrány (zajištěno pomalostí procesu, velkým objemem nebo aktivním transportem). Hustota difuzního toku J (tok látky) - množství látky, které projde za časovou jednotku jednotkovou plochou rozhraní. Platí: S je celková plocha rozhraní, kterým látka difunduje, dt je čas, během kterého projde rozhraním množství látky dn.

I. Fickův zákon A.E. Fick (1885): (pohyb látky ve směru osy x, jednorozměrný případ difuze). I. Fickův zákon: D - difuzní koeficient [m2.s-1] Typické hodnoty D: od 1.10-9 pro nízkomolekulární látky po 1.10-12 pro velké makromolekuly

Difuzní koeficient Přibližný vztah pro velikost difuzního koeficientu odvodil A. Einstein: k je Boltzmannova konstanta T je absolutní teplota h je koeficient dynamické viskozity r je poloměr částice. Výraz 6p.h.r se označuje jako frikční nebo hydrodynamický koeficient f .

II. Fickův zákon 1. Fickův zákon platí pro ustálenou (stacionární) difuzi, při které se koncentrační gradient látky nemění v čase. Pro většinu reálných difuzních procesů však tato podmínka splněna není a pro popis difuze je nutno použít 2. Fickův zákon: Výraz d2c/dx2 (druhá derivace koncentrace c podle polohy x, d(dc/dx)/dx, čili infinitezimální změna koncentračního gradientu podél osy x. Čteme: Časová změna koncentrace látky v daném místě je úměrná prostorové změně gradientu koncentrace, konstantou úměrnosti je difuzní koeficient. 2. Fickův zákon je formálně shodný s rovnicí pro vedení tepla - koncentrace c je ovšem nahrazena absolutní teplotou T.

Osmóza a osmotický tlak Systém se snaží dostat do termodynamické rovnováhy vyrovnáním koncentrací látek v celém objemu, který je rozdělen na části I a II, oddělené membránou propouštějící pouze rozpouštědlo. Rozpouštědlo proto difunduje do prostoru II, ve kterém je rozpuštěná látka. Výsledkem je nárůst tlaku v prostoru II, je-li membrána nepoddajná. Proces probíhá za konstantní teploty a při konstantních látkových množstvích. Membrána je tuhá.

Pfefferův pokus

van't Hoffův vzorec (zákon) P = c.R.T P je osmotický tlak [Pa] c koncentrace rozpuštěné látky (n/V) R univerzální plynová konstanta T absolutní teplota Přesněji popisuje osmotický tlak analogický vzorec: P = m'.R.T m' je objemová molalita (látkové množství rozpuštěné látky dělené objemem rozpouštědla). Odchylky od tlaku dle van't Hoffova zákona se zvyšují s rostoucí molekulovou hmotností rozpuštěné látky.

van't Hoffův vzorec (zákon) Pro elektrolyty: P = i.c.R.T i je bezrozměrný van't Hoffův opravný faktor, který udává kolikrát více je v roztoku částic, než byl původní počet částic nedisociovaných. Součin i.c se někdy označuje jako osmolární koncentrace či osmolarita s jednotkou osmol.l-1. Silný elektrolyt o konc. 1 mol.l-1, disociující na dva ionty, má osmolární koncentraci 2 osmol.l-1 a dvojnásobný osmotický tlak ve srovnání se stejně koncentrovanou nedisociující látkou. Osmotický tlak krevní plazmy a nitrobuněčné tekutiny je asi 770 kPa. (1 M roztok nedisociující látky má při stejné teplotě osmotický tlak asi 2,58 MPa). tlak onkotický (3,3 kPa)

Tonicita roztoků Roztoky o osmotickém tlaku nižším než má krevní plazma se označují jako hypotonické, o stejném tlaku jako izotonické a o vyšším tlaku jako hypertonické. endoosmóza: hemolýza, plazmoptýza Rozmezí hodnot koncentrací hypotonického roztoku, při kterých dochází k částečné a úplné hemolýze = osmotická odolnost (resistence) erytrocytů. exoosmóza: plazmorhyza (u rostlin - plazmolýza) receptory (volumoreceptory v ledvinách a osmoreceptory v hypotalamu)

Jak to vypadá? Echinocyty – erytrocyty vystavené hypertonickému roztoku. http://webteach.mccs.uky.edu/COM/pat823/online_materials/diglectures/rbcs/imgshtml/image36.html Plazmolýza buněk epidermis cibule hypertonickém prostředí. http://www.pgjr.alpine.k12.ut.us/science/whitaker/Cell_Chemistry/Plasmolysis.html

Autor: Vojtěch Mornstein Grafika: - - - Poslední revize: Srpen 2012