Objem a povrch kvádru a krychle Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Objem tělesa velikost prostoru, který dané těleso vyplňuje počet jednotkových krychlí, které vyplní těleso
Urči objemy těles složených z krychlí o délce hrany 1 cm: 4 26 cm3 8 4 6
Objem krychle V = 3 . 3 . 3 V = a . a . a a – délka hrany krychle
Objem kvádru V = 5 . 4 . 3 V = a . b . c a, b, c – délky hran kvádru
Vypočítej objem kvádru s rozměry na obrázku: V = a . b . c V = 3 . 4 . 7 c = 7 cm V = 84 cm3 Objem kvádru na obrázku je 84 cm3. b = 4 cm a = 3 cm
Vypočítej objem kvádru s rozměry na obrázku: a = 9 cm b = 8 cm c = 5 cm V = a . b . c Objem kvádru na obrázku je 360 cm3. V = 9 . 8 . 5 V = 360 cm3
Zvládneš vypočítat objem uvedených těles? 1. krychle: a = 8 cm V = 512 cm3 2. kvádr: a = 3,6 m; b = 5,1 m; c = 2,5 m V = 45,9 m3 3. krychle: a = 0,6 dm V = 0,216 dm3 4. kvádr: a = 14 mm; b = 9 mm; c = 11 mm V = 1386 mm3 V = 1,728 m3 5. krychle: a = 1,2 m
Jednotky objemu metr krychlový … m3 … objem krychle o hraně délky 1 m decimetr krychlový … dm3 centimetr krychlový … cm3 milimetr krychlový … mm3
Vztahy mezi jednotkami objemu . 1 000 : 1 000 1 dm3 1 dm3 . 1 000 1 cm3 1 cm3 : 1 000 . 1 000 : 1 000 1 mm3 1 mm3
Převádění jednotek objemu Doplň tabulku: dm3 cm3 mm3 0,0004 3,6 28 240 000 8,4 0,009 5 000 0,4 400 400 000 0,0000036 0,0036 3 600 0,028 28 000 28 000 000 0,00024 0,24 240 0,0084 8 400 8 400 000 9 9 000 9 000 000 0,005 5 5 000 000
Objem kapalin měříme také v litrech: 1 l = 1 dm3 1 hl = 100 l 1 dl = 0,1 l 1 cl = 0,01 l 1 ml = 0,001 l 1 l … 1 litr 1 hl … 1 hektolitr 1 dl … 1 decilitr 1 cl … 1 centilitr 1 ml … 1 mililitr
Převádění jednotek objemu Doplň tabulku: hl l dl cl ml 0,0123 6,8 87,1 5 236 367 000 1,23 12,3 123 1 230 0,068 68 680 6 800 0,0871 8,71 871 8 710 52 360 0,5236 52,36 523,6 3,67 367 3 670 36 700
Převeď jednotky objemu: 0,0006 0,58 0,6 dl = ……... hl 58 ml = ………dl 69 ml = ………l 236 ml = ………l 0,28 hl = ………l 9 000 ml = ………hl 895 cl = ………dl 11 hl = ……… dl 23,5 cl = ………l 4,98 l = ………dl 5,24 l = ………cl 5 247 ml = ………l 0,025 l = ………ml 9,2 cl = ………dl 0,036 l = ………dl 630 l = ……… dl 458 cl = ………ml 5,4 hl = ………dl 0,069 0,236 28 0,09 89,5 11 000 0,235 49,8 524 5,247 25 0,92 0,36 6 300 4 580 5 400
Červeně přeškrtni špatné výsledky a napiš správné: 2,4 m3 = 240 l 0,56 hl = 56 dm3 0,05 m3 = 5 000 ml 2,58 dm3 = 2 580 ml 4 890 cm3 = 4,89 hl 58,7 l = 58 700 cm3 2,4 m3 = 2 400 l 0,05 m3 = 50 000 ml 4 890 cm3 = 0,0489 hl
Slovní úlohy Vejde se 12 hl vody do nádrže tvaru kvádru s rozměry dna 1,8 m a 1,3 m a výškou 0,6 m? Kolik m3 vzduchu je v místnosti tvaru kvádru s rozměry 6 m; 3,5 m a 2,7 m? Které těleso má větší objem? Krychle o hraně 24 cm nebo kvádr s rozměry 1,8 dm; 0,15 m a 43 cm? Kolik kvádrů s rozměry 2 cm; 3 cm a 4 cm můžete vymodelovat z plastelíny o objemu 500 cm3? Na parkovišti tvaru čtverce se stranou délky 42 m byl položen asfaltový koberec vysoký 15 cm. Kolik m3 materiálu se spotřebovalo?
Objem uvedené nádrže je 14,04 hl, proto se do ní vejde 12 hl vody. Řešení úlohy č. 1 0,6 m V = a . b . c V = 1,8 . 1,3 . 0,6 V = 1,404 m3 = 1404 dm3 = 1404 l = 14,04 hl V = 14,04 hl Objem uvedené nádrže je 14,04 hl, proto se do ní vejde 12 hl vody. 1,3 m 1,8 m
Řešení úlohy č. 2 V = a . b . c V = 6 . 3,5 . 2,7 V = 56,7 m3 V místnosti je 56,7 m3 vzduchu.
Řešení úlohy č. 3 13 824 > 11 610 Větší objem má krychle. Krychle a = 24 cm V = a . a . a V = 24 . 24 . 24 V = 13 824 cm3 Kvádr a = 18 cm ; b = 15 cm ; c = 43 cm V = a . b . c V = 18 . 15 . 43 V = 11 610 cm3 13 824 > 11 610 Větší objem má krychle.
Řešení úlohy č. 4 Objem jednoho kvádru: V = a . b . c V = 2 . 3 . 4 V = 24 cm3 Počet vymodelovaných kvádrů: 500 : 24 = 20,83 (zb. 0,08) Z plastelíny o objemu 500 cm3 lze vymodelovat 20 kvádrů daných rozměrů.
Na položení asfaltového koberce se spotřebovalo 264,6 m3 materiálu. Řešení úlohy č. 5 Kvádr: a = 42 m; b = 42 m; c = 0,15 m V = a . b . c V = 42 . 42 . 0,15 V = 264,6 m3 Na položení asfaltového koberce se spotřebovalo 264,6 m3 materiálu.
Hodnocení Vašeho výkonu: Za každý správný výsledek si přidělte 1 bod, body sečtěte a udělte si známku! 5 správných odpovědí: ………………1 4 správné odpovědi: ………………….2 3 správné odpovědi: ………………….3 2 správné odpovědi: ………………….4 1 správná odpověď: …………………..5 Tak jak jste dopadli?
součin objemu tělesa a hustoty látky, Hmotnost tělesa součin objemu tělesa a hustoty látky, ze které dané těleso je m = V . m – hmotnost tělesa V – objem tělesa - hustota látky
Úlohy na procvičení Vypočítejte hmotnost ocelové krychle o délce hrany 6 cm. Hustota oceli je 7,8 g/cm3. Jaká je hmotnost žulového kvádru o rozměrech 14 dm; 8 dm a 12 dm? Hustota žuly je 2900 kg/m3. Vypočítejte hmotnost vzduchu v učebně o rozměrech 12 m; 8 m a výšce 3 m. Hmotnost 1 m3 vzduchu je 1,29 kg. Kniha má rozměry 24 cm x 15 cm a její tloušťka je 22 mm. Určete hmotnost balíku 50 kusů těchto knih, je-li hustota papíru 0,9 g/cm3. Jaká je hmotnost vody v nádrži o rozměrech 1,5 m; 0,8 m a hloubce 5 dm, je-li nádrž zcela plná? Jeden dm3 vody má hmotnost přibližně 1 kilogram. Ocelová krychle má hmotnost 421,2 g. Jaký je objem krychle? Vypočítej objem dřevěného kvádru o hmotnosti 264 g, je-li hustota dřeva 0,5 g/cm3.
Hmotnost dané ocelové krychle je 1684,8 g, což je přibližně 1,68 kg. Řešení úlohy č. 1 a = 6 cm V = a. a. a V = 6. 6. 6 V = 216 cm3 m = V . m = 216 . 7,8 m = 1684,8 g Hmotnost dané ocelové krychle je 1684,8 g, což je přibližně 1,68 kg.
Řešení úlohy č. 2 a = 14 dm b = 8 dm c = 12 dm V = a . b . c V = 1344 dm3 V = 1,344 m3 m = V . m = 1,344 . 2900 m = 3897,6 kg Hmotnost žulového kvádru daných rozměrů je 3897,6 kg, což je přibližně 3,9 t.
Hmotnost vzduchu v učebně je 371,52 kg. Řešení úlohy č. 3 a = 12 m b = 8 m c = 3 m V = a . b . c V = 12 . 8 . 3 V = 288 m3 m = V . m = 288 . 1,29 m = 371,52 kg Hmotnost vzduchu v učebně je 371,52 kg.
Hmotnost balíku s 50 knihami je 35,64 kg. Řešení úlohy č. 4 a = 24 cm b = 15 cm c = 22 mm = 2,2 cm V = a . b . c V = 24 . 15 . 2,2 V = 792 cm3 m = V . m = 792 . 0,9 m = 712,8 g 1 kniha ….. 712,8 g 50 knih ….. 712,8 . 50 = 35 640 g Hmotnost balíku s 50 knihami je 35,64 kg.
Hmotnost vody v uvedené nádrži je 600 kg. Řešení úlohy č. 5 A = 1,5 m = 15 dm B = 0,8 m = 8 dm C = 5 dm V = a . b . c V = 15 . 8 . 5 V = 600 dm3 1 dm3 vody … 1 kg 600 dm3 vody …….. 600 kg Hmotnost vody v uvedené nádrži je 600 kg.
Objem ocelové krychle o hmotnosti 421,2 g je 54 cm3. Řešení úlohy č. 6 m = 421,2 g = 7,8 g/cm3 m = V . V = m : V = 421,2 : 7,8 V = 54 cm3 Objem ocelové krychle o hmotnosti 421,2 g je 54 cm3.
Objem dřevěného kvádru je 528 cm3. Řešení úlohy č. 7 m = 264 g = 0,5 g/cm3 m = V . V = m : V = 264 : 0,5 V = 528 cm3 Objem dřevěného kvádru je 528 cm3.
Síť tělesa Síť tělesa sestrojíme tak, že všechny jeho stěny zakreslíme do jedné roviny takovým způsobem, že např. po vystřižení z papíru bude možné vytvořit model příslušného tělesa.
Síť krychle se skládá ze šesti shodných čtverců.
Síť kvádru se skládá ze tří dvojic shodných obdélníků.
Příklady sítí kvádru a krychle
Povrch tělesa součet obsahů všech jeho stěn obsah sítě tělesa
Povrch krychle a.a a a a S = 6 . a . a
Povrch kvádru S = 2.a.b + 2.a.c + 2.b.c S = 2.(a.b + a.c + b.c) a b c
Povrch krychle S = 6 . 3 . 3 S = 6 . 9 S = 54 cm2
Povrch kvádru S = 2.(4.3 + 4.2 + 3.2) S = 2.(12 + 8 + 6) S = 2.26 S = 52 cm2
Vypočítejte povrch krychle s hranou délky: a = 7 cm a = 0,4 dm a = 15 mm a = 10 m S = 6.7.7 = 294 cm2 b) S = 6.0,4.0,4 = 0,96 dm2 c) S = 6.15.15 = 1350 mm2 d) S = 6.10.10 = 600 m2
Vypočítejte povrch kvádru s délkami hran: a = 2 cm; b = 5 cm; c = 9 cm S = 2.(2.5 + 2.9 + 5.9) = 2.(10 + 18 + 45) S = 2.73 = 146 cm2 b) a = 10 dm; b = 5 dm; c = 7 dm S = 2.(10.5 + 10.7 + 5.7) = 2.(50 + 70 + 35) S = 2.155 = 310 dm2 c) a = 18,5 m; b = 2,1 m; c = 0,36 m S = 2.(18,5.2,1 + 18,5.0,36 + 2,1.0,36) S = 2.(38,85 + 6,66 + 0,756) S = 2.46,266 = 92,532 m2
Slovní úlohy na závěr Vypočítej povrch a objem dlažební kostky s hranou délky 1,2 dm. Vypočítej, kolik dm2 plechu je třeba na výrobu krabičky bez víka o rozměrech 2,1 dm; 3,5 dm a výšce 0,5 dm. Petr slepil kvádr o velikosti hran 7 cm, 5 cm a 6 cm. Jirka slepil krychli o hraně 6 cm. Který z chlapců potřeboval více papíru? Součet délek všech hran krychle je 60 mm. Vypočítejte její povrch a objem. Kolik Kč zaplatil Ondra za sklo akvária tvaru kvádru s rozměry podstavy 45 cm a 35 cm a výškou 25 cm, jestliže 1 m2 skla stojí 360 Kč? Vejde se 600 litrů vody do nádrže tvaru kvádru s rozměry dna 2,5 m; 0,9 m a výškou 3 dm?
Slovní úlohy na závěr V kartonu s vnitřními rozměry 6 dm, 45 cm a 0,3 m jsou uloženy krabičky tvaru krychle s hranou délky 75 mm. Kolik krabiček se do kartonu vejde? Na obrázku je podstava pilíře vysokého 2,7 m. Kolik m3 betonu je třeba k jeho zhotovení? 60 cm 30 cm 45 cm
Povrch dlažební kostky je 8,64 dm2 a její objem je 1,728 dm3. Řešení úlohy č. 1 a = 1,2 dm S = 6 . a . a V = a . a . a S = 6 . 1,2 . 1,2 V = 1,2 . 1,2 . 1,2 S = 6 . 1,44 V = 1,728 dm3 S = 8,64 dm2 Povrch dlažební kostky je 8,64 dm2 a její objem je 1,728 dm3.
Na výrobu krabičky bez víka je třeba 12,95 dm2 plechu. Řešení úlohy č. 2 a = 2,1 dm; b = 3,5 dm; c = 0,5 dm S = a.b + 2.a.c + 2.b.c S = 2,1.3,5 + 2.2,1.0,5 + 2.3,5.0,5 S = 7,35 + 2,1 + 3,5 S = 12,95 dm2 Na výrobu krabičky bez víka je třeba 12,95 dm2 plechu. a b c
214 < 216 Více papíru potřeboval Jirka, který lepil krychli. Řešení úlohy č. 3 Kvádr: a = 7 cm; b = 5 cm ; c = 6 cm S = 2.(a.b + a.c + b.c) S = 2.(7.5 + 7.6 + 5.6) S = 2.(35 + 42 + 30) S = 2.107 S = 214 cm2 Krychle: a = 6 cm S = 6.a.a S = 6.6.6 S = 216 cm2 214 < 216 Více papíru potřeboval Jirka, který lepil krychli.
Řešení úlohy č. 4 Krychle má 12 hran a = 60:12 a = 5 mm S = 6.a.a S = 150 mm2 V = a.a.a V = 5.5.5 V = 125 mm3 Povrch dané krychle je 150 mm2, objem 125 mm3.
Za sklo akvária Ondra zaplatil asi 201 Kč. Řešení úlohy č. 5 a = 45 cm ; b = 35 cm; c = 25 cm S = a.b + 2.a.c + 2.b.c S = 45.35 + 2.45.25 + 2.35.25 S = 1575 + 2250 + 1750 S = 5575 cm2 = 0,5575 m2 1 m2 ……………. 360 Kč 0,5575 m2 ……360.0,5575 = 200,70 Kč Za sklo akvária Ondra zaplatil asi 201 Kč.
600 litrů vody se do nádrže vejde, její objem je 675 litrů. Řešení úlohy č. 6 a = 2,5 m b = 0,9 m c = 3 dm = 0,3 m V = a . b . c V = 2,5 . 0,9 . 0,3 V = 0,675 m3 = 675 dm3 V = 675 l 600 litrů vody se do nádrže vejde, její objem je 675 litrů.
Do kartonu se vejde 192 uvedených krabiček. Řešení úlohy č. 7 Karton: a = 6 dm = 60 cm b = 45 dm c = 0,3 m = 30 cm V = a . B . C V = 60 . 45 . 30 V = 81 000 cm3 Krabička: a = 75 mm = 7,5 cm V = a . a . a V = 7,5 . 7,5 . 7,5 V = 421,875 cm3 81 000 : 421,875 = 192 Do kartonu se vejde 192 uvedených krabiček.
Na zhotovení pilíře je třeba přibližně Řešení úlohy č. 8 kvádr: a = 0,6 m b = 0,3 m c = 2,7 m V1 = a . b . c V1 = 0,6 . 0,3 . 2,7 V1 = 0,486 m3 2. kvádr: a = 0,15 m b = 0,45 m c = 2,7 m V2 = a . b . c V2 = 0,15 . 0,45 . 2,7 V2 = 0,18225 m3 V = V1 + V2 = 0,486 + 0,18225 = 0,66825 m3 Na zhotovení pilíře je třeba přibližně 0,67 m3 betonu.
Těším se brzy na shledanou!