PROTEINY Dr. Jana Novotná.

Slides:



Advertisements
Podobné prezentace
Digitální učební materiál
Advertisements

Biologická role proteinů
Aminokyseliny.
Bílkoviny Proteiny SŠZePř Rožnov p. R PaedDr
BÍLKOVINY IV Rozdělení bílkovin
Nukleové kyseliny AZ-kvíz
PROTEINY - přítomny ve všech buňkách - podíl proteinů až 80%
VY_32_INOVACE_05_PVP_243_Hol
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_199.
Organické a anorganické sloučeniny lidského těla
GYMNÁZIUM, VLAŠIM, TYLOVA 271
Chemické vazby Chemické vazby jsou soudržné síly, neboli silové interakce, poutající navzájem sloučené atomy v molekulách a krystalech. Podle kvantově.
Chemická stavba buněk Září 2009.
Peptidy.
Biologie buňky chemické složení.
Struktura a vlastnosti bílkovin.
Aminokyseliny, struktura a vlastnosti bílkovin
BÍLKOVINY (STRUKTURA)
Zpracoval Martin Zeman 5.C
Opakování sacharidy, tuky, bílkoviny
Výukový materiál zpracován v rámci projektu EU peníze školám
Bílkoviny - proteiny.
Střední zdravotnická škola, Národní svobody Písek, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/ Číslo DUM:VY_32_INOVACE_KUB_09.
Aminokyseliny, proteiny, enzymologie
valin izoleucin leucin methionin
Chemická stavba bílkovin
FUNKCE PROTEINŮ.
Střední zdravotnická škola, Národní svobody Písek, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/ Číslo DUM:VY_32_INOVACE_KUB_08.
GYMNÁZIUM, VLAŠIM, TYLOVA 271 Autor Mgr. Eva Vojířová Číslo materiálu 4_2_CH_13 Datum vytvoření Druh učebního materiálu prezentace Ročník 4.ročník.
Chemické složení extracelulární matrix
31.1 Aminokyseliny, bílkoviny
úlohy proteinů Proteiny (bílkoviny) stavební katalytická
BÍLKOVINY Proteiny.
Bílkoviny a jejich metabolismus. Charakteristika Makromolekulární látky biopolymery Makromolekulární látky biopolymery Stavební jednotkou jsou  - AMK:
Bílkoviny a jejich význam ve výživě člověka
Autor výukového materiálu: Petra Majerčáková Datum vytvoření výukového materiálu: červen 2013 Ročník, pro který je výukový materiál určen: IX Vzdělávací.
CHEMIE IMUNITNÍCH REAKCÍ
Přírodní látky Bílkoviny = Proteiny –přírodní látky složené ze 100 – 2000 molekul aminokyselin (AK) → makromolekuly –obsah – C, H, N, O, S, P –vazby mezi.
Způsoby mezibuněčné komunikace
Metody imunodifuze a precipitace v gelech
Pokuste se o definici proteinů svými vlastními slovy: Bílkoviny jsou organické, polymerní, makromolekulární látky, jejichž základními stavebními jednotkami.
(aminokyseliny, peptidy…)
SOŠO a SOUŘ v Moravském Krumlově
Elektronické učební materiály – II. stupeň Chemie 9 Autor: Mgr. Radek Martinák Bílkoviny.
BÍLKOVINY ( PROTEINY ) biomakromolekulární látky.
Základy molekulární genetiky. Bílkoviny Makromolekuly složené z aminokyselin jedna molekula bílkoviny tvořena obvykle stovkami aminokyselin v živých organismech.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Lydie Klementová. Dostupné z Metodického portálu ISSN:
Bílkoviny-Proteiny Přírodovědný seminář – chemie 9. ročník Základní škola Benešov, Jiráskova 888 Ing. Bc. Jitka Moosová.
PROTEINY Řec. „proteios“=prvořadý Sloučeniny polypeptidového charakteru, které se nalézají ve tkáních všech živých organizmů syntéza: Rostliny + některé.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alexandra Hoňková. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
BÍLKOVINY. DEFINICE Odborně proteiny, z řeckého PROTEIN=PRVNÍ. Jsou to přírodní makromolekulární látky vznikající z aminokyselin. Obsahují vázané atomy.
Funkce bílkovin Ch_059_Přírodní látky_Funkce bílkovin Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace.
Název školy: Základní škola Městec Králové Autor: Ing. Hana Zmrhalová Název: VY_32_INOVACE_18 CH 9 Číslo projektu: CZ.1.07/1.4.00/ Téma: PŘÍRODNÍ.
Aminokyseliny Proteiny upraveno v rámci projektu OPPA Tento projekt je financován z prostředků Evropského sociálního fondu a rozpočtu hl. města Prahy v.
1 PROTEINY © Biochemický ústav LF MU (H.P.)
Název školy: Základní škola Karla Klíče Hostinné
DIGITÁLNÍ UČEBNÍ MATERIÁL
Buňka  organismy Látkové složení.
α- aminokyseliny a bílkoviny
Typy molekul, látek a jejich vazeb v organismech
PROTEINY Dr. Jana Novotná.
Předmět: KBB/BB1P; KBB/BUBIO
Lékařská chemie Aminokyseliny Peptidy, proteiny Primární, sekundární, terciární a kvartérní struktura proteinů.
Chemická struktura aminokyselin
Bílkoviny (proteiny).
C5720 Biochemie 03- Fibrilární bílkovin Petr Zbořil 9/17/2018.
02-Peptidy a bílkoviny FRVŠ 1647/2012
Bílkoviny.
BÍLKOVINY=PROTEINY.
Bílkoviny = Proteiny Přírodní látky
Transkript prezentace:

PROTEINY Dr. Jana Novotná

Chemická povaha proteinů Biopolymery aminokyselin Makromolekuly o molekulové hmotnosti > 10 000 (protein titin z kosterního a srdečního svalu má 26 926 AK v jednom polypeptidovém řetězci) Typický protein má 200 – 300 aminokyselin (menší jsou peptidy)

Peptidová vazba je rigidní a planární Kyslík karbonylové skupiny má slabý negativní náboj a amidový dusík slabý pozitivní náboj. N-Ca a Ca-C rotují v úhlu f resp. j. Peptidová C-N vazba rotovat nemůže. Take over from: D. L. Nelson, M. M. Cox :LEHNINGER. PRINCIPLES OF BIOCHEMISTRY Fifth edition

Struktura proteinů Makromolekuly jsou tvořeny sadou různých aminokyselin v přesně definovaném pořadí. Prostorové uspořádání a biologická funkce je dána aminokyselinovým složením.

Funkční úloha proteinů 1. Funkce dynamická transport kontrola metabolismu kontrakce katalýza chemických přeměn 2. Funkce strukturální architektura orgánů a tkání podpůrné funkce

Klasifikace proteinů podle biologické funkce 1. Enzymy (laktátdehydrogenáza, DNA polymeráza) 2. Zásobní proteiny (ferritin, kasein, ovalbumin) 3. Transportní proteiny (hemoglobin, myoglobin, sérový albumin) 4. Kontraktilní proteiny (myosin, aktin) 5. Hormony (insulin, růstový hormon) 6. Ochranné proteiny krve (protilátky, komplement, fibrinogen) 7. Strukturální proteiny (kolagen, elastin, proteoglykany) 8. Receptory pro hormony a jiné signální molekuly

Struktura proteinů globulární fibrilární Všeobecné rozdělení proteinů podle struktury: globulární fibrilární Globulární proteiny jsou kompaktně složeny a zabaleny. Fibrilární proteiny tvoří filamenta a jsou protažené.

Primární struktura Primární struktura proteinů – lineární pořadí aminokyselin. N-terminální část je nalevo (volná a-amino-skupina posledního levého amino-kyselinového zbytku). C-terminální část je napravo (volná a-karboxylová skupina posledního pravého aminokyselinového zbytku). http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Polypeptides.html

Primární struktura Z primární struktury proteinů lze odvodit: strukturu proteinu mechanismus působení na molekulární úrovni vzájemné vztahy k jiným proteinům v evoluci Sekvenování proteinů má význam pro: předpokládanou podobnost mezi dvěma proteiny studium modifikací proteinu

Znalost primární struktury insulinu vedla k pochopení mechanismu jeho účinků a mezidruhové podobnosti. pankreas - prekurzor – proinsulin hydrolýza a odštěpení 35 aminokyselin, segment C tím vznikne aktivní insulin Druhová podobnost insulinu (aminokyselinové složení): člověk, kůň, potkan, prase, ovce, kuře. Odlišnost aminokyselinového složení jen ve zbytcích 8, 9 a 10 (A řetězec), 30 (B řetězec).

Vyšší uspořádání proteinů Sekundární struktura Prostorové uspořádání polypeptidového řetězce závisí na aminokyselinovém složení. Otáčení peptidových vazeb kolem a uhlíků (atomy peptidové vazby se účastní na vzniku vodíkových vazeb, postranní řetězce aminokyselin R se vazeb neúčastní). Terciární struktura Trojrozměrné uspořádání polypeptidových jednotek (do klubka nebo vlákna). Vzájemná interakce postranních řetězců aminokyselin.

Kvartérní struktura Skládání polypeptidových podjednotek. Nekovalentní interakce mezi podjednotkami. (ne všechny proteiny mají kvartérní strukturu). Vyšší uspořádání polypeptidových řetězců do sekundární, terciární, a kvartérní struktury je spontánní, po trojrozměrném uspořádání vzniknou disulfidické můstky.

Sekundární struktura a-helix Pravotočivá šroubovice, stabilizovaná vodíkovými vazbami. 3,6 aminokyselinových zbytků na jednu otáčku, R aminokyselin jsou orientovány ven. Všechny C=O a N-H skupiny peptidových vazeb jsou uloženy rovnoběžně s podélnou osou a-helixu. Každá karbonylová (C=O) skupina peptidové vazby je vázána vodíkovou vazbou ke čtvrté N-H skupině. Helikální strukturu mají převážně vláknité proteiny (keratiny), svalové proteiny aj. Výjimečný a-helix má kolagen. Tři levotočivé a-helixy se uspořádávají do pravotočivé trojité šroubovice – superhelixu (dáno specifickým aminokyselinovým složením kolagenu – 33% glycinu, 13% Pro a Hypro)

b–struktura (struktura skládaného listu) Segmenty natažených polypeptidových řetězců. Dva segmenty (polypeptidové řetězce) jsou stabilizovány vodíkovými vazbami mezi C=O a N-H skupinami dvou sousedních peptidových vazeb. Sousední polypeptidové řetězce jsou uloženy antiparalelně nebo paralelně. Velký počet vodíkových vazeb udržuje strukturu v nataženém stavu

Terciární struktura Je důležitá pro funkci proteinu: - denaturované enzymy ztrácejí svou funkci - denaturované protilátky ztrácejí schopnost vázat antigen. Mutace v genetickém kódu ovlivní terciátní strukturu (priony).

Terciární uspořádání proteinu do domén Každá doména má svou funkci (enzymy a katalytické centrum, otáčky transmembránových proteinů plasmatickou membránou). Charakter vazeb udržujících strukturu Hydrofóbní Elektrostatická Vodíková Disulfidická b-struktura a-helix

Příklady terciární struktury a, b uspořádání domén proteinu, b-struktura je v centru domény Příklad b-struktury

Kvartérní struktura Komplex dvou a více polypeptidových řetězců jsou dohromady spojeny nekovalentními vazbami Čtyři podjednotky hemoglobinu (dvě a a dvě b se spojují do kvartérní struktury)

Síly a interakce uplatňující se ve struktuře proteinu Nevazebné interakce Hydrofobní interakce Vznikají uvnitř polypeptidových řetězců mezi hydrofóbními postranními řetězci aminokyselinových zbytků (R-skupin). Interakce R-skupin polypeptidových řetězců s vodním pláštěm. Nepolární R-skupiny rozpuštěné ve vodě indukují vznik tenké slupky, kde jsou vodní molekuly vysoce uspořádané. Dvě nepolární skupiny se dostávají velice těsně k sobě. Vodíkové vazby Donory a akceptory protonů jsou uvnitř polypeptidových řetězců a mezi řetězci navzájem

Vazby kovalentní Elektrostatické síly van der Waalsovy síly Interakce mezi dvěma opačně nabitými R-skupinami jako je Lys a Arg (pozitivně nabité) a Asp a Glu (záporně nabité) Ionizované R-skupiny s dipóly vodních molekul. van der Waalsovy síly Přitažlivé van der Waalsovy síly - interakce mezi vzniklými dipóly u sousedních nenabitých atomů. Odpudivé van der Waalsovy síly - nenabité atomy se dostávají velice blízko sebe, ale nevznikají dipóly. Odpudivé síly vznikají v důsledku odpuzování se elektronů navzájem tam, kde se elektronové oblaky překryjí. Vazby kovalentní Peptidová vazba -CO-NH- Disulfidová vazba -S-S-

Denaturace a opětovné složení Denaturace je ztráta trojrozměrné struktury. Protein ztrácí svoji funkci. Denaturace teplem zcela ruší slabé interakce (primárně narušuje vodíkové vazby). Krajní hodnoty pH mění celkový povrchový náboj proteinu, vznikají odpudivé elektrostatické síly a zanikají některé vodíkové vazby. Organická rozpouštědla a detergenty ruší hydrofobní interakce Renaturace je proces, kdy protein opět získává svou trojrozměrnou strukturu Take over from: D. L. Nelson, M. M. Cox :LEHNINGER. PRINCIPLES OF BIOCHEMISTRY Fifth edition

Některé proteiny mají při skládání asistenty Ne všechny proteiny se skládají spontánně, ale potřebují molekulární chaperony. Chaperony ovlivňují buď částečně složené polypeptidové řetězce, nebo polypeptidy, které jsou složené nesprávně. Převzato z: D. L. Nelson, M. M. Cox :LEHNINGER. PRINCIPLES OF BIOCHEMISTRY Fifth edition

Poruchy skládání proteinů Vlákna amyloidu jsou nerozpustné extracelulární útvary špatně složených polypeptidových řetězců (amyloidosa). b-skládaný list se přiloží jen částečně ke stejné oblasti vedlejšího polypeptidového řetězce a vytváří se jádro amyloidu. Vlákna amyloidu se ukládají do prostoru mezi buňky a do okolí cév různých orgánů(srdce, ledviny, konečníku aj.). Vznikají po dlouho trvajícím zánětu nebo zhoubném onemocnění. Převzato z: D. L. Nelson, M. M. Cox :LEHNINGER. PRINCIPLES OF BIOCHEMISTRY Fifth edition

Typy proteinů Globulární proteiny Fibrilární proteiny Lipoproteiny Sféroidní tvar Variabilní molekulová váha Relativně vysoká rozpustnost Různé funkce – katalytické, transportní, regulační (metabolismus, genové exprese) Fibrilární proteiny Tyčinkovitý tvar Malá rozpustnost Strukturální funkce v organismu Lipoproteiny Komplexy protein + lipid Glykoproteiny Proteiny s kovalentně vázanými cukry

Strukturálně-funkční vztahy Globulární proteiny Globulární proteiny, jako je celá řada enzymů, jsou obvykle složeny z kombinace obou typů sekundární struktury. Ale například hemoglobin je složen výhradně z a-helixu a protilátky pouze z b- struktury.

Fibrilární proteiny Kolagen NH3 COOH Tvoří více jak 2/3 všech tělesných bílkovin. Je pevný v tahu, pružný. Obsahují ho všechny typy pojiva ve tkáních a orgánech. Je to nerozpustný glykoprotein (protein + cukerná složka - glukóza, galaktóza). Každá třetí aminokyselina je glycin (Gyl-X-Y). Má vysoký obsah prolinu. Obsahuje dvě hydroxylované aminokyseliny v polypeptidových řetězcích (hydroxyprolin, hydroxylysin). Je složen ze tří polypetidových řetězců (a-řetězců). Kolagen Tvorba fibril Tvorba příčných vazeb

Fibrilární proteiny Keratin Keratin je hlavní fibrilární strukturální protein vlasů, kůže a nehtů. Keratinová intermediální filamenta jsou také cytoskeletární součástí desmosomů tvořících buněčná spojení. Keratiny mají velmi mnoho příčných vazeb a jsou složeny jak z a-helixu, tak z β-struktury. Mají vysoký obsah glycinu a alaninu.

Fibrilární proteiny Elastin Vyskytuje se ve tkáních vyžadujících elasticitu (arterie, plíce, kůže, elastická ligamenta, chrupavka). Je složen z monomerního rozpustného tropoelastinu, ten je pak příčně pospojován v nerozpustný elastin pomocí desmosinu a isodesmosinu.

Lipoproteiny Složené komplexy proteinu a lipidu Molekulární agregát s přibližnou stechiometrií mezi oběma komponentami Různé funkce v krvi (transport lipidů mezi tkáněmi), v lipidovém metabolismu Apolipoprotein = čistá proteinová složka lipoproteinové částice, většinou dlouhý polypeptid, s obsahem sacharidů

Lipoproteiny Klasifikace plasmatických lipoproteinů (podle jejich hustoty): Lipoproteiny s vysoké hustotě (HDL) – proteinová složka apolipoprotein A-I (ApoA-I) Lipoproteiny o nízké hustotě (LDL) – ApoB-100 Lipoproteiny o střední hustotě (IDL) – ApoB-100 Lipoproteiny o velmi nízké hustotě(VLDL) - ApoC

Glykoproteiny Sacharidový podíl je na proteinovou složku vázán: O-glykosydovou vazbou buď na –OH skupiny seirnu nebo threoninu (proteoglykany) nebo na hydroxyprolin nebo hydroxylysin (kolagen) N-glykosydovou vazbou na amidový dusík asparaginu 1. Proteiny vylučované specifickými buňkami hormony proteiny extracelulární matrix proteiny kaskády krevní koagulace protilátky mukózní sekrety epiteliálních buněk 2. Proteiny lokalizované na buněčném povrchu - receptory (přijímání signálů z okolního prostředí buňky –hormony, růstové faktory,cytokiny aj. buněčná signalizace)

Protilátky Molekula imunoglobulinu je tetramer dva řetězce těžké – H dva řetězce lehké – L (k a l) Třídy imunoglobulinů: těžký řetězec IgG g IgM m IgA a IgD d IgE e

Kontraktilní proteiny svalů Tlustá filamenta - myosin Tenká filamenta – aktin, tropomyosin, troponin G-aktin – globulární protein F-aktin – fibrilární protein Jednou z důležitých biologických vlastností myosinu je schopnost spojovat se s aktinem za vzniku svalové kontrakce

Proteiny biologických membrán Integrální membránové proteiny Periferní membránové proteiny Kanály a póry Membrána erytrocytu a-podjednotka napěťově řízeného sodíkového kanálu

Membránové receptory přenášejí signál vyvolaný hormonem do buňky. Signál spouští kaskádu dějů, kterými se přenáší do jádra. Model b2 adrenergního receptoru – b struktura se střídá s a helixem. Sedm domén procházejících membránou. Senzitivní na katecholaminy, zejména na noradrenalin

Proteolytické enzymy Proteolytické enzymy jsou klasifikovány podle svého mechanismu katalytické reakce. Vazebné místo pro substrát katalyticky hydrolyzuje peptidovou vazbu Serinové proteázy – využívají aktivovaný serinový zbytek pro vazbu substrátu v aktivním místě. Cysteinové proteázy - využívají aktivovaný cysteinový zbytek pro vazbu substrátu v aktivním místě. Aspartátové proteázy - využívají aktivovaný aspartátový zbytek pro vazbu substrátu v aktivním místě. Metaloproteázy - využívají aktivovaný kovový iont pro vazbu substrátu v aktivním místě.

Proteiny regulace transkripce DNA Regulační proteiny se s vysokou specifičností vážou na DNA a regulují aktivaci nebo potlačení transkripce genu do mRNA. Tři jedinečné motivy: helix-závit-helix zinkový prst leucinový zip Přímý kontakt s DNA, vazba pomocí vodíkových můstků nebo van der Waalsových sil. Helix-závit-helix Zinkový prst

Hemoglobin Lidský hemoglobin má několik forem. Složen ze dvou a a dvou b podjednotek, které se liší primární strukturou. Váže čtyři molekuly kyslíku, přenáší kyslík krví z plic do tkání a buněk. Hemoglobin a myoglobin obsahují prostetickou skupinu hem. Protein bez hemu = apoprotein Kompletní protein s hemem = holoprotein

Myoglobin Myoglobin má jeden polypeptidový řetězec, váže jednu molekulu kyslíku. Váže a uvolňuje kyslík v cytoplasmě svalových buněk.

Použité odkazy: http://student.ccbcmd.edu/~gkaiser/biotutorials/proteins/images/alphahelix.jpg http://chem.ps.uci.edu/~pfarmer/grp2/myoglobin.jpg http://cs.wikipedia.org/wiki/Hemoglobin http://academic.brooklyn.cuny.edu/biology/bio4fv/page/tertie.gif http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Polypeptides.html http://www.mun.ca/biology/scarr/Collagen_structure.gif http://academic.brooklyn.cuny.edu/biology/bio4fv/page/prot_struct-4143.JPG http://academic.wsc.edu/faculty/jatodd1/351/actin_myosin.jpg