Algoritmy a struktury meuropočítačů ASN – C2

Slides:



Advertisements
Podobné prezentace
Lineární klasifikátor
Advertisements

Cvičení 9 – Ekonomická funkce nelineární v parametrech :
kvantitativních znaků
OBECNÉ OPTIMALIZAČNÍ MODELY
Programování funkcí v Excelu (pole)
Elipsa chyb a Helmertova křivka
MATLAB LEKCE 7.
SMS brána Eurotel Jednoduché OCR pomocí neuronových sítí Marek Kukačka
Úvod Klasifikace disciplín operačního výzkumu
Neuronové sítě Marcel Jiřina.
Automatická fonetická segmentace pomocí UNS Registr - 36 neuronových sítí MLNN (pro každou českou hlásku jedna UNS) Trénovací množina: databáze promluv.
Topologie neuronových sítí (struktura, geometrie, architektura)
Aplikační počítačové prostředky X15APP MATLAB - SIMULINK
ASN - cvičení 2 : Ukázky práce s NN-Toolboxem
SSC - cvičení 7 Aplikace programového systému Speech Laboratory - SL Postup: 1.Zkopírovat z adresy
LVQ – Learning Vector Quantization
SSC - cvičení 3 MATLAB - BPG algoritmus 1.Vytvořit tréninková data 2.Vytvořit objekt sítě 3.Natrénovat síť 4.Simulace Funkce pro učení: learngd … základní.
Jiří Gazárek, Martin Havlíček Analýza nezávislých komponent (ICA) v datech fMRI, a ICA necitlivá ke zpoždění.
Kalmanuv filtr pro zpracování signálů a navigaci
Rozložení EEG elektrod (10-20 system)
Algoritmy a struktury neuropočítačů ASN - P1 Prof.Ing. Jana Tučková,CSc. Katedra teorie.
Lineární regresní analýza Úvod od problému
ROZHODOVACÍ PROCESY PRO VÍCECESTNÉ TELEMATICKÉ APLIKACE Filip Ekl
DOK „Umělá inteligence“ v DOK (i jinde). NEURONOVÉ SÍTĚ.
Memory-based Learning Učení založené na paměti (výtah z přednášky Waltera Daelemanse, GSLT, Göteborg 2003) + TiMBL -ukázka použití programu Jiří Mírovský,
Využití umělých neuronových sítí k urychlení evolučních algoritmů
Komprese barev Jakub Gemrot Ondřej Burkert. Popis problému Běžné obrázky mají 16,7 mil. barev Běžné obrázky mají 16,7 mil. barev Problém: Jak je rozumně.
Lineární algebra.
Klasifikace a rozpoznávání
MODEL DVOJBRANU - HYBRIDNÍ PARAMETRY
Regresní analýza a korelační analýza
Neuronové sítě Jakub Krátký.
Vícevrstvé neuronové sítě.  Neuronové sítě jsou složeny z neuronů tak, že výstup jednoho neuronu je vstupem jednoho nebo více neuronů  Propojení neuronů.
kvantitativních znaků
Základy ekonometrie Cvičení září 2010.
Neuronové sítě Martin Vavřička Copyright 2004 © Martin Vavřička 2004 – V 53 ČVUT v Praze – fakulta Stavební.
MODEL DVOJBRANU - ADMITANČNÍ PARAMETRY
Je dán dvojbran, jehož model máme sestavit. Předpokládejme, že ve zvoleném klidovém pracovním bodě P 0 =[U 1p ; I 1p ; U 2p ; I 2p ] jsou známy jeho diferenciální.
Umělé neuronové sítě a Support Vector Machines
Nelineární programování - úvod
NEURONOVÉ SÍTĚ (c) Tralvex Yeap. All Rights Reserved.
Optimalizace versus simulace 9.přednáška. Obecně o optimalizaci  Maximalizovat nebo minimalizovat omezujících podmínkách.  Maximalizovat nebo minimalizovat.
Nelineární klasifikátory
Tato prezentace byla vytvořena
Neuronové sítě Jiří Iša
Klasifikace klasifikace: matematická metoda, kdy vstupní objekty X(i) jsou rozřazovány do tříd podle podobnosti metody klasifikace bez učitele: podoba.
Jan Šaršon Milan Jaška 1Dobývání znalostí, MFF UK, 2008.
Vektorová kvantizace (VQ) (Vector Quantization)
Rozpoznávání v řetězcích
Logika a umělá inteligence pro multi-agentní systémy Mobilní agent řízený neuronovou sítí.
Gradientní metody Metoda největšího spádu (volný extrém)
© Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík, CSc.
Neuronové sítě (Úvod a MLP sítě)
Metodika generování a ladění modelů neuronových sítí Ing. Martin MoštěkVŠB – Technická Univerzita Ostrava.
W i ref (t+1) = W i ref (t) + h ci (t) [X(t) - W i ref (t)], i Nc h ci (t) 0, t  proces konverguje Algoritmy a struktury neuropočítačů ASN – P3 SOM algoritmus.
© Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík, CSc.
Algoritmy a struktury neuropočítačů ASN - P14 Hopfieldovy sítě Asociativní paměti rekonstrukce původních nezkreslených vzorů předkládají se neúplné nebo.
Dita Matesová, David Lehký, Zbyněk Keršner
Praktická využití UNS V medicínských aplikacích Jan Vrba 2006.
© Institut biostatistiky a analýz INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc.
Cenová mapa podnájmů v Praze Ondřej Kmoch Tomáš Kohan
Neuronové sítě. Vývoj NS 1943 – W. McCulloch, W. Pittse – první jednoduchý matematický model neuronu 1951 – M. Minsky - první neuropočítač Snark 1957.
Neuronové sítě.
Klasifikace a rozpoznávání Lineární klasifikátory.
© Institut biostatistiky a analýz INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc.
Umělé neuronové sítě „Za umělou neuronovou síť se obecně považuje taková struktura pro distribuované paralelní zpracování dat, která se skládá z jistého,
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
Klasifikace a rozpoznávání
Neuronové sítě.
Neuronové sítě.
Transkript prezentace:

Algoritmy a struktury meuropočítačů ASN – C2 Několik obecných poznámek k učení UNS učení UNS je ve své podstatě optimalizační proces optimalizujeme tzv. účelovou funkci ( chybová funkce při učení s učitelem, extrakce statistických veličin ze vstupních vektorů při samoorganizaci) účelové učení (performance learning) - založené na hledání extrémů (minim a maxim) účelové funkce Y = T( X, W ) transformační funkce účelová funkce vyjadřuje : - vzájemnou závislost vstupních parametrů a parametrů neuronové sítě - míru vzdálenosti v prostoru adaptačních parametrů učení s filtrací - optimalizace pouze některé vlastnosti signálu (některá složka spektra) adaptační soubor - změnami jeho parametrů dochází k učení sítě důležité je určení jeho velikosti a rozsah jeho parametrů

a) vhodný průběh učení NN (závislost chyby, např a) vhodný průběh učení NN (závislost chyby, např. průměrné střední kvadratické chyby, sumy stř.kvadr. chyby, chyby min-max apod., na počtu učebních etap ) hladká chybová funkce ukazuje na dobře zvolenou velikost trénovacího souboru a na dobře zvolené parametry učení b) nevhodný průběh učení NN (závislost chyby na počtu učebních etap ) plochý průběh chybové funkce ukazuje na příliš velký trénovací soubor nebo špatně zvolené parametry učení, např. malý krok učení (learning rate) a) b) c) c) nevhodný průběh učení NN (závislost střední kvadratické chyby na počtu učebních etap ) oscilační průběh chybové křivky ukazuje na malý trénovací soubor nebo špatně zvolené parametry učení, např. velký krok učení (learning rate)

Jak nastavit váhy a prahy NN ? Pro NN, která dosud nebyla učena, je vhodné použít pro inicializaci funkce typu sigmoida malá náhodná čísla, aby derivace funkce nabývala malých hodnot (při velkých hodnotách parametrů dochází k saturaci a síť se přestává adaptovat). Naopak - velké hodnoty derivací jsou vhodné pro aktivační funkce Gaussova typu. Pro aktivační funkce typu hyperbolická tangenta se doporučuje - β ≤ wi j ≤ β , β = 0.7 ( p ) 1/n n … počet neuronů ve vstupní vrstvě, p … počet neuronů ve skryté vrstvě

Perceptron Typ učení: s učitelem (supervised learning) SSC – cvičení 2 Perceptron 1957 Frank Rosenblatt Typ učení: s učitelem (supervised learning) vstup: x = [x0, x1,…,xn] vektor bias (=1) … prahová hodnota 0 pro < 0 výstup: y = 1 pro > 0 možnosti: klasifikace do 2 tříd pro lineárně separabilní vzory

o x Perceptron Funkce XOR x o a1 = sgn [w11 x1 + w12 x2 + w10] vnitřní a2 = sgn [w21 x1 + w22 x2 + w20] proměnné y = sgn [w1 a1 + w2 a2 + w0] y = 0 pro (0,0) a (1,1) x y = 1 pro (0,1) a (1,0) o 1. x = (0,1) a1 = 1 x = (0,0), (1,0), (1,1) a1 = 0 Červené šrafování 2. x = (0,1), (0,0), (1,1) a2 = 1 x = (1,0) a2 = 0 Černé šrafování x = (0,1) a1 = 1 a2 = 1 o x = (1,0) a1 = 0 a2 = 0 x = (0,0), (1,1) a1 = 0 a2 = 1 x

Příklad: XOR problém P = [0 0 1 1 ; 0 1 0 1]; 4 vstupní vektory o 2 elementech T = [1 0 0 1]; 4 vektory požadovaných hodnot o 1 elementu y = f [ w1 x1 + w2 x2 + w0] f(x) = 1, x > 0 f(x) = 0, x 0 2-vrstvý perceptron pro řešení XOR problému 1 w10 w1 1 w0 a1 w20 y x1 w21 w2 a2 2 w22 x2 Mód off-line (k adaptaci dochází až po průchodu všech vstupních vektorů) … batch učení

Neural Network Toolbox Functions Network Use Functions Perceptron v MATLABu Help – Product help (F1) help percept vytvoření sítě: newp inicializace: init simulace: sim trénování: train učení: learnp Normované učení: learnp aktivační funkce: hardlim Neural Network Toolbox Functions Network Use Functions New Networks Functions Perceptron

NEWP Syntaxe: net = newp net = newp(pr,S,tf,lf) pr - Rx2 matice minimálních a maximálních hodnot pro R vstupních elementů S - počet neuronů tf – přenosová funkce, default = 'hardlim'. lf – algoritmus učení, default = 'learnp'. přenosová (aktivační) funkce tf může být hardlim nebo hardlims algoritmus učení lf může být learnp nebo learnpn Příklad: Je vytvořen Perceptron se 2 elementy na vstupu (rozsah [0 1] a [-2 2]) a 1 neuronem. net = newp([0 1; -2 2],1); Na vstupu je množina P tvořená 4 vektory o 2 elementech a 4 odpovídající cílové (target) hodnoty T o 1 elementu. P = [0 0 1 1; 0 1 0 1]; T = [0 1 1 1]; Trénovat budeme na 20 epoch a pak provedeme simulaci. y = sim(net,P) net.trainParam.epochs = 20; net = train(net,P,T); Pozn: Je–li u hodnot vstupních elementů velký rozptyl, dosáhneme rychlejšího naučení pomocí funkce learnpn.

Demonstrační úlohy – MATLAB Váhy a prahy jsou inicializovány pomocí funkce initzero. Adaptace a trening jsourealizovány pomocí trains a trainc, Míra naučení se určuje pomocí průměrné absolutní chyby mae. Demonstrační úlohy – MATLAB nnd4db ukázka hraniční přímky nnd4pr pravidlo učení Perceptronu (rozdíl mezi učením a tréninkem) demop1 klasifikace pomocí Perceptronu se 2-vstupy (4 vektory o 2 elementech, klasifikace do 2 tříd) demop4 nevyvážená data (dlouhé učení) P = [-0.5 -0.5 +0.3 -0.1 -40; -0.5 +0.5 -0.5 +1.0 50]; T = [1 1 0 0 1]; plotpv(P,T); demop5 Normalizace Perceptronu (2-vstupní hard limit neurony jsou trénovány pro klasifikaci 5 vstupních vectorů do 2 kategori, jeden z vektorů je mohem větší než ostatní, trénink s funkcí learnpn je rychlejší) demop6 lineárně neseparabilní prostory Pozn: dále následuje soubor sscC2M_04.ppt

ADALINE – ADAptivní LIneární Neuron 1960 Bernard Widrow Lineární sítě, lineární aktivační funkce (bipolární), Výstupní hodnota analogová, lineárně separabilní vstupní data. Algoritmus učení: Widrow-Hoffův LMS (Least Mean Square) Typy úloh: 1. Výstup z natrénované sítě odpovídá požadovaným (cílovým) hodnotám. 2. Výstup z natrénované sítě odpovídá na změny v síti (adaptivní systém).

± Lineární síť (W,b) help linnet newlin vytvoření lineární sítě newlind návr lineární vrstvy learnwh W-H učící algoritmus purelin aktivační funkce sim simulace adapt adaptaptivní filtrace T P A ± Lineární síť (W,b) E applin2 adaptivní linearní predikce demolin8 adaptivní odšumování nnd10nc adaptive odhlučněnín kokpitu letadla demolin1 asociace vzorů demolin2 trenink lineárního neuronu nnd10lc lineární klasifikátor demolin4 lineární řešení nelineárního problému demolin5 nedostatečně určená úloha demolin6 lineárně závislá úloha demolin7 příliš velký learning rate