Derivace složené funkce Základy infinitezimálního počtu Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF.

Slides:



Advertisements
Podobné prezentace
Základy infinitezimálního počtu
Advertisements

Základy infinitezimálního počtu
Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Konstrukce lichoběžníku 1
Výukový materiál zpracovaný v rámci projektu Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:* III/2Sada:* I. Ověření ve výuce: oktávaDatum:
Výukový materiál zpracovaný v rámci projektu Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:* III/2Sada:* I. Ověření ve výuce: oktávaDatum:
Základy infinitezimálního počtu
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _731 Výukový materiál zpracován v rámci projektu EU peníze školám.
Základy infinitezimálního počtu
Základy infinitezimálního počtu
Základy infinitezimálního počtu
Základy infinitezimálního počtu
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Dostupné z Metodického portálu www. rvp
Základy infinitezimálního počtu
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
DERIVACE - SOUČINU a PODÍLU FUNKCÍ - SLOŽENÉ FUNKCE
Konstrukce trojúhelníku
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _727 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _738 Výukový materiál zpracován v rámci projektu EU peníze školám.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _737 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _721 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _730 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _736 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _739 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _734 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _722 Výukový materiál zpracován v rámci projektu EU peníze školám.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _735 Výukový materiál zpracován v rámci projektu EU peníze školám.
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o. Osvoboditelů 380, Louny Číslo projektu CZ.1.07/1.5.00/ Číslo sady30Číslo DUM.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _740 Výukový materiál zpracován v rámci projektu EU peníze školám.
Orofacionální cvičení I Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _732 Výukový materiál zpracován v rámci projektu EU peníze školám.
VY_32_INOVACE_MAT_VA_08 Digitální učební materiál Sada: Matematika Téma: Komplexní čísla – grafické řešení nerovnic s absolutní hodnotou Autor: Mgr. Eva.
Vzájemná poloha přímek v prostoru Vzájemná poloha přímek v prostoru Autor:Jana Buršová.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _728 Výukový materiál zpracován v rámci projektu EU peníze školám.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _726 Výukový materiál zpracován v rámci projektu EU peníze školám.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Vzájemná poloha dvou kružnic
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _724 Výukový materiál zpracován v rámci projektu EU peníze školám.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _729 Výukový materiál zpracován v rámci projektu EU peníze školám.
Užití diferenciálního počtu
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _725 Výukový materiál zpracován v rámci projektu EU peníze školám.
„Výuka na gymnáziu podporovaná ICT“.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Určitý integrál Základy infinitezimálního počtu. Určitý integrál a=x 0 x1x1 x2x2 x3x3 x4x4 x 5 = b m5m5 m3m3 m2m2 m1m1 m4=m4=
KOMPLEXNÍ ČÍSLA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Hana Němcová Matematika, seminář diferenciální a integrální počet Osmý ročník víceletého gymnázia.
Orientovaný úhel Goniometrie Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Ivana Mastíková. Dostupné z Metodického portálu
Vlastnosti funkcí sin x a cos x Goniometrie Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Ivana Mastíková. Dostupné z Metodického.
Kombinační číslo 6. října 2013 VY_42_INOVACE_190206
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Základy infinitezimálního počtu
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Komplexní čísla - absolutní hodnota
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
LOGARITMICKÉ ROVNICE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN:  ,
DERIVACE FUNKCE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN:  ,
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Transkript prezentace:

Derivace složené funkce Základy infinitezimálního počtu Dostupné z Metodického portálu ISSN: , financovaného z ESF

Derivace složených funkcí V úlohách z praxe musíme řešit nejen derivace elementárních funkcí, ale i derivace funkcí z elementárních funkcí složených. Připomeneme si složené funkce z kapitoly základní vlastnosti funkce: Například: Jsou dány funkce f: y = 2x + 3 a g: y = sin x. Najděte funkce h = f ○ g, k = g ○ f (znak ○ značí funkce složená s funkcí). 1) h(x) = f(g(x)) = 2(g(x)) + 3 = 2sinx + 3; D(h) = R v tomto případě je funkce f funkcí vnější a funkce g je funkcí vnitřní. 2) k(x) = g(f(x)) = sin(f(x)) = sin(2x + 3); D(k) = R pro funkci k platí, že funkce g je funkce vnější a funkce f je funkce vnitřní. Rozeznat v zápisu funkce, která funkce je vnější a která vnitřní je pro pochopení derivace složené funkce velmi důležité. Dostupné z Metodického portálu ISSN: , financovaného z ESF

Derivace složených funkcí cvičení 1 Rozhodněte, která funkce je v zápisu daných složených funkcí funkce vnitřní: Dostupné z Metodického portálu ISSN: , financovaného z ESF

Derivace složených funkcí zobrazit postup řešení Dostupné z Metodického portálu ISSN: , financovaného z ESF

Výpočet derivace složené funkce příklad1 Dostupné z Metodického portálu ISSN: , financovaného z ESF Další

Derivace dalších elementárních funkcí Dostupné z Metodického portálu ISSN: , financovaného z ESF zobrazit postup řešení

Výpočet derivace složené funkce příklad2 Dostupné z Metodického portálu ISSN: , financovaného z ESF Další

Derivace elementárních funkcí cvičení 2 Dostupné z Metodického portálu ISSN: , financovaného z ESF

Derivace funkce shrnutí Připomeneme si nové pojmy: V příští kapitole se naučíme pomocí derivací vyšetřit průběh funkce. Dostupné z Metodického portálu ISSN: , financovaného z ESF

Použitá literatura Přehled užité matematiky, Karel Rektorys a spolupracovníci Přehled středoškolské matematiky, Josef Polák Matematika pro gymnázia – Diferenciální a integrální počet, RNDr. Dag Hrubý, RNDr. Josef Kubát Matematika – příprava k maturitě a k přijímacím zkouškám na vysoké školy, RNDr. Jindra Petáková Dostupné z Metodického portálu ISSN: , financovaného z ESF