Slovní úlohy o společné práci − 3

Slides:



Advertisements
Podobné prezentace
Slovní úlohy o společné práci − 2
Advertisements

Slovní úlohy o společné práci
Slovní úlohy o společné práci − 3
Slovní úlohy o společné práci
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Rovnice a nerovnice Slovní úlohy VY_32_INOVACE_RONE_15.
Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu:CZ.1.07/1.4.00/ Šablona:III/2 Inovace a zkvalitnění výuky.
Základní škola a Mateřská škola Dobrá Voda u Českých Budějovic, Na Vyhlídce 6, Dobrá Voda u Českých Budějovic EU PENÍZE ŠKOLÁM Zlepšení podmínek.
Tercie Rovnice Rovnice – lineární rovnice postup na konkrétním příkladu.
Společná práce. 1.Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí.
Jméno autora: Marie Roglová Škola: ZŠ Náklo Datum vytvoření (období): březen 2012 Ročník: 8. Tematická oblast: Matematická gramotnost Téma: Slovní úlohy.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Slovní úlohy o společné práci − 3. Jak při řešení slovních úloh postupovat? 1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji.
Tercie Rovnice Rovnice – slovní úlohy postup na konkrétním příkladu.
ČÍSLO PROJEKTUCZ.1.07/1.5.00/ ČÍSLO MATERIÁLUDUM 7 – Lineární rovnice – teorie NÁZEV ŠKOLY Střední škola a Vyšší odborná škola cestovního ruchu,
Slovní úlohy o pohybu Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICEMI.
Poměr Co je poměr. Dělení v daném poměru..
Slovní úlohy o směsích (řešené lineární rovnicí o jedné neznámé)
ČAS.
Slovní úlohy o společné práci
Řešení nerovnic Lineární nerovnice
Základní škola Děčín VI, Na Stráni 879/2 – příspěvková organizace
Lineární rovnice a nerovnice I.
Digitální učební materiál zpracovaný v rámci projektu
Opakování na 4. písemnou práci
SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICÍ (ÚVOD)
Poměr Co je poměr. Změna v daném poměru..
Soustava rovnic Karel Mudra.
Soustava dvou lineárních rovnic se dvěma neznámými
Slovní úlohy o společné práci
Digitální učební materiál zpracovaný v rámci projektu
pedagogických pracovníků.
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
Poměr v základním tvaru.
VY_32_INOVACE_Pel_II_05 Rovnice – úlohy o společné práci
2.2 Kvadratické rovnice.
VY_42_INOVACE_49_Úlohy o společné práci 1
SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICÍ (o směsích)
ZÁKLADNÍ ŠKOLA, JIČÍN, HUSOVA 170 Číslo projektu
Kvadratické nerovnice
Slovní úlohy o společné práci stejný čas
SLOVNÍ ÚLOHY O SPOLEČNÉ PRÁCI
ZÁKLADNÍ ŠKOLA, JIČÍN, HUSOVA 170 Číslo projektu
Rovnice s neznámou ve jmenovateli
Řešení nerovnic Lineární nerovnice
Slovní úlohy o společné práci − 2
Slovní úlohy o pohybu Pohyby stejným směrem..
Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Pohybové úlohy 2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Slovní úlohy o společné práci − 2
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Slovní úlohy o společné práci
Soustava dvou lineárních rovnic se dvěma neznámými
Algebraické výrazy: lomené výrazy
Slovní úlohy o společné práci
Lomené výrazy (2) Podmínky řešitelnost
Poměr v základním tvaru.
Rovnice s neznámou ve jmenovateli
Rovnice HRA.
Slovní úlohy řešené rovnicemi nebo soustavami rovnic
Hra (AZ kvíz) ke zopakování či procvičení učiva:
Lineární rovnice Druhy řešení.
Hra (AZ kvíz) ke zopakování či procvičení učiva:
Rovnice opakování Výukový materiál pro 9.ročník
Dělitelnost přirozených čísel
Grafy kvadratických funkcí
MATEMATIKA Lineární rovnice s neznámou ve jmenovateli.
Teorie chyb a vyrovnávací počet 2
Dělitelnost přirozených čísel
Transkript prezentace:

Slovní úlohy o společné práci − 3

Jak při řešení slovních úloh postupovat? 1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí zvolené neznámé a zadaných podmínek vyjádři všechny ostatní údaje z textu. 4. Vyjádři logickou rovnost plynoucí z textu úlohy a na jejím základě sestav rovnici a vyřeš ji. 5. Proveď zkoušku, kterou ověříš, že získané výsledky vyhovují všem podmínkám úlohy. 6. Napiš odpovědi na otázky zadané úlohy.

Tak si to pojďme ukázat na konkrétních příkladech. Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: Pracovat mohou dvě, tři, ale i více těles, osob najednou. Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více jedinců, to, na čem společně „makají“, je vždy rovno 1). Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. Tak si to pojďme ukázat na konkrétních příkladech. Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem.

Tak si to pojďme ukázat na konkrétních příkladech. A my se nyní zaměříme právě na to, jak vypočítat onu část, jinými slovy na to, za jak dlouho by společnou práci vykonalo každé těleso, každá osoba sama. Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: Pracovat mohou dvě, tři, ale i více těles, osob najednou. Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více jedinců, to, na čem společně „makají“, je vždy rovno 1). Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. Tak si to pojďme ukázat na konkrétních příkladech. Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem.

Slovní úloha o společné práci Ukázka zadání takové úlohy: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším?

Slovní úloha o společné práci Větším přítokem by se bazén naplnil za 20 hodin, což znamená, že za 1 hodinu by se naplnila 1/20 bazénu, za 2 hodiny pak 2/20 atd. Protože se bazén oběma přítoky společně naplní za 12 hodin, naplní se tedy za tu dobu společné práce 12/20 bazénu. Menším přítokem by se bazén naplnil za x hodin, což znamená, že za 1 hodinu by se naplnila 1/x bazénu, za 2 hodiny pak 2/x atd. Za 12 hodin společné práce se tedy naplní 12/x bazénu. Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším?

Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším? Tak ještě jednou a pomaleji.

Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším?

Typická rovnice slovních úloh o společné práci Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším? Doba společné práce Jedna celá společná práce Doba práce prvního Doba práce druhého Typická rovnice slovních úloh o společné práci

Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším? Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem Bazén se naplnil menším přítokem za 30 hodin.

Příklad: Dělník a učeň vykonají společně práci za 6 hodin. Dělník ji sám vykoná za 10 hodin. Za kolik hodin by ji vykonal učeň?

Příklad: Dělník a učeň vykonají společně práci za 6 hodin. Dělník ji sám vykoná za 10 hodin. Za kolik hodin by ji vykonal učeň? Dělník : Učeň : Učeň by práci vykonal sám za 15 hodin.

Příklad: Dělník A by sám provedl výkop za 7 hodin, dělník B sám za 6 hodin. Protože výkop má být hotov za 2 hodiny, byl přibrán dělník C. Za kolik hodin by výkop provedl sám dělník C?

Dělník C by výkop provedl sám za 5 hodin a 15 minut. Příklad: Dělník A by sám provedl výkop za 7 hodin, dělník B sám za 6 hodin. Protože výkop má být hotov za 2 hodiny, byl přibrán dělník C. Za kolik hodin by výkop provedl sám dělník C? Dělník A : Dělník B : Dělník C : Dělník C by výkop provedl sám za 5 hodin a 15 minut.