C5720 Biochemie 03- Fibrilární bílkovin Petr Zbořil 9/17/2018.

Slides:



Advertisements
Podobné prezentace
BÍLKOVINY (ROZDĚLENÍ)
Advertisements

Biologická role proteinů
Aminokyseliny.
Bílkoviny Proteiny SŠZePř Rožnov p. R PaedDr
BÍLKOVINY IV Rozdělení bílkovin
PROTEINY - přítomny ve všech buňkách - podíl proteinů až 80%
BUŇKY A TKÁNĚ V LIDSKÉM TĚLE
GYMNÁZIUM, VLAŠIM, TYLOVA 271
Chemická stavba buněk Září 2009.
Peptidy.
Chemické složení organismů
Biologie buňky chemické složení.
Struktura a vlastnosti bílkovin.
BÍLKOVINY (STRUKTURA)
Zpracoval Martin Zeman 5.C
Opakování sacharidy, tuky, bílkoviny
Základní vzdělávání - Člověk a příroda - Přírodopis – Biologie člověka
Výukový materiál zpracován v rámci projektu EU peníze školám
Střední zdravotnická škola, Národní svobody Písek, příspěvková organizace Registrační číslo projektu:CZ.1.07/1.5.00/ Číslo DUM:VY_32_INOVACE_KUB_09.
Příčně pruhované svaly: Stavba.
valin izoleucin leucin methionin
Chemická stavba bílkovin
GYMNÁZIUM, VLAŠIM, TYLOVA 271 Autor Mgr. Eva Vojířová Číslo materiálu 4_2_CH_13 Datum vytvoření Druh učebního materiálu prezentace Ročník 4.ročník.
PŘÍRODNÍ POLYMERY Bílkovinná vlákna III ELASTIN
Biologie člověka.
Chemické složení extracelulární matrix
úlohy proteinů Proteiny (bílkoviny) stavební katalytická
BÍLKOVINY Proteiny.
Bílkoviny a jejich metabolismus. Charakteristika Makromolekulární látky biopolymery Makromolekulární látky biopolymery Stavební jednotkou jsou  - AMK:
Autor výukového materiálu: Petra Majerčáková Datum vytvoření výukového materiálu: červen 2013 Ročník, pro který je výukový materiál určen: IX Vzdělávací.
Fyziologické aspekty stárnutí
SVALY Obecná charakteristika.
Přírodní látky Bílkoviny = Proteiny –přírodní látky složené ze 100 – 2000 molekul aminokyselin (AK) → makromolekuly –obsah – C, H, N, O, S, P –vazby mezi.
Příjemce podpory – škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, p.o. Číslo projektu:CZ.1.07/1.5.00/
Pokuste se o definici proteinů svými vlastními slovy: Bílkoviny jsou organické, polymerní, makromolekulární látky, jejichž základními stavebními jednotkami.
PROTEINY EXTRACELULÁRNÍ MATRIX
(aminokyseliny, peptidy…)
SOŠO a SOUŘ v Moravském Krumlově
BÍLKOVINY ( PROTEINY ) biomakromolekulární látky.
Bílkoviny. Obsah Význam a vlastnosti bílkovin Složení bílkovin – aminokyseliny Struktura bílkovin Přehled bílkovin - fibrilární a globulární bílkoviny.
Bílkoviny – AK - procvičení. Pojmenuj Nakresli vzorce lys phe glu val gly ile.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Lydie Klementová. Dostupné z Metodického portálu ISSN:
Bílkoviny-Proteiny Přírodovědný seminář – chemie 9. ročník Základní škola Benešov, Jiráskova 888 Ing. Bc. Jitka Moosová.
PROTEINY Řec. „proteios“=prvořadý Sloučeniny polypeptidového charakteru, které se nalézají ve tkáních všech živých organizmů syntéza: Rostliny + některé.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alexandra Hoňková. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
BÍLKOVINY. DEFINICE Odborně proteiny, z řeckého PROTEIN=PRVNÍ. Jsou to přírodní makromolekulární látky vznikající z aminokyselin. Obsahují vázané atomy.
Funkce bílkovin Ch_059_Přírodní látky_Funkce bílkovin Autor: Ing. Mariana Mrázková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace.
Název školy: Základní škola Městec Králové Autor: Ing. Hana Zmrhalová Název: VY_32_INOVACE_18 CH 9 Číslo projektu: CZ.1.07/1.4.00/ Téma: PŘÍRODNÍ.
HLAVNÍ SLOŽKY EXTRACELULÁRNÍ MATRIX Jana Novotná.
Č.projektu : CZ.1.07/1.1.06/ Tkáně. Č.projektu : CZ.1.07/1.1.06/ Pokuste se vystihnout pojem tkáň soubor tvarově podobných buněk s určitou,
1 PROTEINY © Biochemický ústav LF MU (H.P.)
Biologie člověka vědní obory: anatomie fyziologie
ZÁKLADNÍ FUNKCE SVALOVÉ SOUSTAVY
DIGITÁLNÍ UČEBNÍ MATERIÁL
Svalová soustava.
Výukový materiál VY_52_INOVACE_25_ Bílkoviny-vlastnosti
SOUSTAVA SVALOVÁ Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
α- aminokyseliny a bílkoviny
Nukleové kyseliny Charakteristika: biopolymery
Lékařská chemie Aminokyseliny Peptidy, proteiny Primární, sekundární, terciární a kvartérní struktura proteinů.
Chemická struktura aminokyselin
Bílkoviny (proteiny).
02-Peptidy a bílkoviny FRVŠ 1647/2012
C5720Biochemie 07-Polysacharidy Petr Zbořil 1/2/2019.
C5720Biochemie 07-Polysacharidy Petr Zbořil 1/13/2019.
Bílkoviny.
C5720 Biochemie 03- Fibrilární bílkovin Petr Zbořil 5/2/2019.
Tkáň soubor buněk stejného tvaru a funkce Tkáň v lidském těle:
BÍLKOVINY=PROTEINY.
Bílkoviny = Proteiny Přírodní látky
Transkript prezentace:

C5720 Biochemie 03- Fibrilární bílkovin Petr Zbořil 9/17/2018

Obsah Fibrilární bílkoviny – typy fibroinu, keratinu, kolagenu. Strukturní funkce Též některé globulární Petr Zbořil 9/17/2018

Strukturní bílkoviny Výstavba struktur Oporné struktury tkání a buněk (u rostlin vede celulosa) Kostra Cytoskelet Nitro- i mimobuněčný materiál (vazivo) Kontraktilní – pohyb, změna tvaru Fibrilární Většina – typická funkce Nerozpustné – výrazná vlastnost Globulární Menšina – aktin Přechod globulární – fibrilární (fibrinogen – fibrin) Petr Zbořil 9/17/2018

Fibrilární bílkoviny Vláknitá struktura, skleroproteiny RTG analýza Charakteristické rysy Periodické opakování typických skupin Periody identity – klasifikační znak – vzdálenosti sousedních skupin Rozdělení podle hodnot period Skupina fibroinu z hedvábí a β-keratinu s periodou identity 0,65 – 0,70 nm Skupina α-keratinu, myosinu a fibrinogenu s periodou identity 0,51 – 0,54 nm Skupina kolagenu s periodou identity 0,28 – 0,29 nm Petr Zbořil 9/17/2018

Skupina fibroinu z hedvábí a β-keratinu Struktura skládaného listu Jsou podstatou hedvábných a pavoučích vláken (fibroin) Stejnou strukturu má i natažený lidský vlas (β-keratin), který dává rovněž charakteristický RTG diagram. Pro fibroin jsou to antiparalelní, u β-keratinu paralelní struktura. Petr Zbořil 9/17/2018

Fibroin z hedvábí antiparalelní β-struktura Petr Zbořil 9/17/2018

Struktura fibroinu a) antiparalelní b-skládaný list s vysokým obsahem Gly a Ala umožňuje těsné nahloučení listů b) fibroinová vlákna tvořící pavučinu. Petr Zbořil 9/17/2018

α-keratin Základem struktury je pravotočivá α-šroubovice, která se postupně stáčí do superšroubovic o 2-3 podjednotkách. Ty se pak opět skládají do protofibril (2 x superhelix) a mikrofibril tvořených 9+2 protofibrilami. Struktura je stabilisována meziřetězcovými v. d. Waalsovými silami a disulfidovými můstky. Lidské vlasy, kůže a nehty, ovčí vlna, žíně apod. Petr Zbořil 9/17/2018

Footer Text 9/17/2018

α-keratin Struktura α-fibroinu základní jednotka pravotočivé α-šroubovice Vlasy se ve vlhkém stavu dají natáhnout až dvojnásobně, přitom přechází struktura šroubovice na skládaný list. Jev je využíván ve vlasových vlhkoměrech (a kadeřnictví). Petr Zbořil 9/17/2018

Skupina kolagenu Základní stavební jednotkou je levotočivá šroubovice - prokolagen Zbytky R jednotlivých aminokyselin směřují dovnitř řetězce. Je tvořena z 2/3 glycinem a prolinem, jejichž málo objemné zbytky lze směstnat do takové struktury. Prokolagen a trimer tropokolagen Petr Zbořil 9/17/2018

Skupina kolagenu Struktura kolagenu, a – c tropokolagen, d – vlákno - mikrofibrila, e – příčně pruhovaná struktura, f – obraz kolagenových vláken pojiva Petr Zbořil 9/17/2018

Struktura kolagenu Tři levotočivé šroubovice jsou stočeny vzájemně pravotočivě do trimeru zvaného tropokolagen (Mr = 360 000, délka 300 nm). Jeho vlákna jsou pak stáčena po způsobu lana tak, že jednotlivá vlákna tropokolagenu přesahují o ¼ sousední. Překryvy vláken tropokolagenu a nahloučení kyselých a basických zbytků jsou příčinou pruhování struktury viditelného v elektronovém mikroskopu. Vzniká tak mechanicky velmi odolná mikrofibrila, jejíž struktura je dále stabilisována příčnými vazbami lysinu a jeho derivátů (žádné disulfidové můstky). Jejich počet s věkem vzrůstá a struktura se stává tužší a méně pružnou. Ještě lepších mechanických vlastností struktury se dosahuje kombinací vláken kolagenu a polysacharidu (viz dále). Charakteristickým znakem struktury kolagenu je modifikace Pro a Lys zbytků, tvorba hydroxyprolinu, hydroxylysinu a allysinu, poslední umožňuje síťování reakcí s Lys, rovněž tak reakce Lys a Glu (charakteristickými reakcemi jsou tvorba amidu, Schiffova, Mannichova, Canizzarova reakce a další). Petr Zbořil 9/17/2018

Struktura kolagenu Typy kolagenu Strukturní materiál Vlákna kolagenu Ca 27 typů Typ I ca 90% Variace struktury, výskyt Strukturní materiál 25–30 % všech bílkovin Mezibuněčný materiál, vazivo Šlachy, kosti Kůže (hojení ran) Vlákna kolagenu Petr Zbořil 9/17/2018

Elastin Vlákna bohatá na alifatické AK, Pro a Lys Výrazné síťování   Vlákna bohatá na alifatické AK, Pro a Lys Výrazné síťování Šroubovice méně uspořádána než u kolagenu volné zohýbané úseky spojeny příčnými vazbami výsledné mechanické vlastnosti připomínají pryž Tvoří podstatnou část materiálu kůže, cév, plicních sklípků apod. tkání Hydrolýzou peptidových vazeb získáváme směs aminokyselin, obsahující neobvyklé deriváty vzniklé síťovacími reakcemi, např desmosin. Petr Zbořil 9/17/2018

Elastin Schema struktury pojivové tkáně obsahující elastin Stárnutím – oxidací více příčných vazeb Ztráta pružnosti Petr Zbořil 9/17/2018

Elastin Struktura desmosinu Výsledek příčného síťování vláken elastinu za účasti 4 lysylových zbytků. Petr Zbořil 9/17/2018

Elastin Mikrofotografie elastinu ve svalové tepně Footer Text 9/17/2018

Strukturní bílkoviny cytoskeletu Příklady – fibrilární i globulární (agregace do vláken) Footer Text 9/17/2018