Ekvivalentní úpravy rovnice

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lineární rovnice se závorkami
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ekvivalentní úprava rovnic
Mgr. Šimon Chládek ZŠ Křížanská 80
Střední škola Oselce Škola: SŠ Oselce, Oselce 1, Nepomuk, Projekt: Registrační číslo: CZ.1.07/1.5.00/ Název: Modernizace.
Tento Digitální učební materiál vznikl díky finanční podpoře EU- Operačního programu Vzdělávání pro konkurenceschopnost Není –li uvedeno jinak, je tento.
Lineární rovnice s jednou neznámou Autor: Vladislava Hurajová.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektuCZ.1.07/1.5.00/ Název projektuEU peníze středním školám Masarykova OA Jičín Název školyMASARYKOVA OBCHODNÍ.
Řešení lineárních rovnic s neznámou ve jmenovateli
Řešení lineárních rovnic o jedné neznámé
Lineární rovnice – 4. část cvičení
Lineární rovnice – 3. část
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lineární rovnice – 2. část
Lineární rovnice Lineární rovnice s jednou neznámou máj vzorec
Řešení lineárních rovnic s neznámou ve jmenovateli
Základní škola Soběslav, tř. Dr. Edvarda Beneše 50 Tř. Dr. E. Beneše 50/II, Soběslav, IČO: tel: Vzdělávací.
Lineární rovnice Řešit rovnici znamená určit neznámou. Při řešení rce se snažíme neznámou dostat na jednu stranu a všechno ostatní na stranu druhou.
Řešte rovnici a proveďte zkoušku: (s – 2) 2 = (s + 1) (s – 4) -
Řešení rovnic Lineární rovnice
Jaroslav Formánek, M-TVT-ZŠ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektuCZ.1.07/1.5.00/ Název projektuEU peníze středním školám Masarykova OA Jičín Název školyMASARYKOVA OBCHODNÍ.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Elektronická učebnice - II
ROVNICE KOŘENY ROVNICE EKVIVALENTNÍ ÚPRAVY
Ekvivalentní úpravy rovnic
VY_32_INOVACE_M-Ar 8.,9.07 Lineární rovnice Anotace: Žák si osvojuje řešení lineárních rovnic pomocí ekvivalentních úprav včetně zkoušky. Řeší lineární.
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektuCZ.1.07/1.5.00/ Název projektuEU peníze středním školám Masarykova OA Jičín Název školyMASARYKOVA OBCHODNÍ.
Lineární rovnice Řešené úlohy.
ROVNICE a NEROVNICE 01 Lineární rovnice I MěSOŠ Klobouky u Brna.
Ryze kvadratická rovnice
R OVNICE A NEROVNICE Kvadratické rovnice – Algebraické způsoby řešení I. VY_32_INOVACE_M1r0108 Mgr. Jakub Němec.
Lineární rovnice a jejich soustavy
Jednoduché rovnice, užití druhé ekvivalentní úpravy
Tercie Rovnice Rovnice – lineární rovnice se zlomky podrobný postup na konkrétním příkladu.
Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu:CZ.1.07/1.4.00/ Šablona:III/2 Inovace a zkvalitnění výuky.
Tento materiál byl vytvořen rámci projektu EU peníze školám
Nerovnice Ekvivalentní úpravy.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Řešení lineárních rovnic
Ekvivalentní úpravy rovnic
Řešení rovnic Lineární rovnice 1
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Úvod do algebry (řešení jednoduchých rovnic)‏
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
Úvod do algebry (řešení jednoduchých rovnic)
Ekvivalentní úpravy rovnic
Úvod do algebry (řešení jednoduchých rovnic)
Algebraické výrazy: počítání s mnohočleny
Nerovnice Ekvivalentní úpravy - 2..
Nerovnice Ekvivalentní úpravy - 1..
Název školy: Základní škola Pomezí, okres Svitavy Autor: Kotvová Olga
Algebraické výrazy: počítání s mnohočleny
Algebraické výrazy: počítání s mnohočleny
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Transkript prezentace:

Ekvivalentní úpravy rovnice Matematika – 9.ročník

Ekvivalentní úprava je postup, kterým z dané rovnice získáme jinou rovnici se stejnou množinou kořenů Rovnici 2x+x=6 je výhodné upravit na tvar 3x=6 Obě rovnice mají stejný kořen x=2 Vždy používáme takových ekvivalentních úprav rovnic, aby se rovnováha na vahách nezměnila.

Ekvivalentní úpravy rovnice L = P P = L Rovnováha na váhách se nezmění, jestliže vyměníme obsah jednotlivých misek Kořeny rovnice se nezmění, jestliže vyměníme levou a pravou stranu rovnice

Ekvivalentní úpravy rovnice L = P L + a = P + a Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme totéž číslo, jednočlen nebo mnohočlen. Rovnováha na váhách se nezmění, jestliže na obě misky přidáme předměty téže hmotnosti.

Ekvivalentní úpravy rovnice L = P L - b = P - b Rovnováha na váhách se nezmění, jestliže z obou misek odebereme předměty téže hmotnosti. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme totéž číslo, jednočlen nebo mnohočlen.

Ekvivalentní úpravy rovnice L = P c · L = c · P Rovnováha na váhách se nezmění, jestliže z obsahy obou misek „stejněkrát“ zvětšíme. Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme týmž nenulovým číslem.

Ekvivalentní úpravy rovnice L = P L : d = P : d Rovnováha na váhách se nezmění, jestliže z obsahy obou misek „stejněkrát“ zmenšíme. Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme týmž nenulovým číslem.

Ekvivalentní úpravy rovnice Co již víme o rovnicích Ekvivalentní úpravy rovnice Jestliže přičteme k oběma stranám stejné číslo, odečteme od obou stran rovnice stejné číslo, přičteme k oběma stranám rovnice stejný mnohočlen, odečteme od obou stran rovnice stejný mnohočlen, vynásobíme obě strany rovnice stejným číslem různým od nuly, vydělíme obě strany rovnice stejným číslem různým od nuly, zaměníme levou a pravou stranu rovnice,

Zapamatujte si užitečnou zásadu pro řešení rovnic:

Jak převádíme členy z jedné strany rovnice na druhou? Rovnice: 3x - 6 = 24 - 2x 3x - 6 + 2x = 24 + 2x - 2x Po této úpravě na pravé straně člen s x „zmizel“: 3x - 6 + 2x = 24 Můžeme si to představit také tak, že člen -2x z pravé strany „přešel“ s opačným znaménkem na levou stranu: 3x - 6 = 24 - 2x 5x - 6 = 24 Podobně se teď můžeme „zbavit“ čísla - 6 na levé straně: 5x = 24 + 6 x = 6

Nezapomeňte ( A + B )2 = A2 + 2AB + B2 ( A – B )2 = A 2 – 2AB + B 2 (A + B ) · ( A – B) = A2 - B2

Jak řešíme rovnice se závorkami? Příklad 7: Řešte rovnici s neznámou z: 2 · (z - 3) = z + 5 Řešení: Nejprve roznásobíme závorku na levé straně rovnice: 2z - 6 = z + 5 Získaná rovnice má tvar, který již dobře známe. Pokračujme v jejím řešení např. převáděním členů: 2z - z = 5 + 6 z = 11 Zkouška: L = 2 · (z - 3) = 2 · (11 - 3) = 2 · 8 = 16 P = z + 5 = 11 + 5 = 16 L = P !!! Nezapomeňte, že při roznásobení závorky záporným činitelem se znaménka všech členů v závorce změní na opačná!

Příklad 8. Řešte rovnici 1 - 3 · (x - 3) = 4 · (1 - 2x) + 1 Řešení 1 - 3x + 9 = 4 · (1 - 2x) + 1 10 - 3x = 5 - 8x -3x + 8x = 5 - 8x 5x = -5 x = -1 Řešte rovnici a proveďte zkoušku: a) -(x - 1) = 3x + 2 b) 2 · (z - 1) = 10 - 3 · (z + 1) c) -y = 4 - 2 · (y - 3)

Základní postup při řešení rovnic Když jsou v rovnici zlomky, odstraň je ! Když jsou v rovnici závorky, zbav se jich ! Když můžeš strany rovnice zjednodušit,zjednoduš je ! Členy s neznámou převeď na jednu stranu, členy bez neznáme na druhou stranu ! Vypočítej neznámou ! Proveď zkoušku !

Matematika Rozhodně není všechno a ani z ní nemusíte všechno znát, ale je dobré mít malé základy 