Vzájemná poloha dvou kružnic

Slides:



Advertisements
Podobné prezentace
Vzájemná poloha kružnice a přímky
Advertisements

Vzájemná poloha dvou kružnic
Vzájemná poloha dvou kružnic
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Sestrojení úhlu o velikosti 60° pomocí kružítka.
Vzájemná poloha dvou kružnic
KRUŽNICE.
Vzájemná poloha dvou kružnic
Vzájemná poloha dvou kružnic
Vzájemná poloha přímky a kružnice
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Vzájemné polohy 8. ročník
Momentová charakteristika – chod při zatížení Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno.
Vzájemná poloha dvou kružnic
VY_42_INOVACE_407_KRUŽNICE OPSANÁ TROJÚHELNÍKU Jméno autora VMMgr. Václav Hendrych Datum vytvoření VM duben 2012 Ročník použití VM 6. ročník Vzdělávací.
Vzájemná poloha kružnice a přímky
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Třeťáci a matematika 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je PaedDr. Marie Janků. Dostupné z Metodického portálu
VY_42_INOVACE_422_VZÁJEMNÁ POLOHA DVOU KRUŽNIC 2 Jméno autora VMMgr. Václav Hendrych Datum vytvoření VM prosinec 2012 Ročník použití VM 8. ročník Vzdělávací.
EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: 585.
Ivana Kuntová, Pětiúhelník Přesná konstrukce velikosti strany pětiúhelníku ze zadaného poloměru opsané kružnice Ivana Kuntová,
Vzájemná poloha dvou kružnic
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Vzájemná poloha dvou kružnic
Bodová konstrukce hyperboly
Kruh, kružnice Základní pojmy
(délka, obsah, objem, hmotnost, čas)
Konstrukce tečen pomocí Thaletovy kružnice
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Sestrojení úhlu o velikosti 90° pomocí kružítka.
PROVĚRKY Převody jednotek času.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
III. část – Vzájemná poloha přímky
Rozklad čísel 6 – 10 – doplňování varianta A
Funkce s absolutní hodnotou Využití grafu funkce při řešení rovnic a nerovnic s absolutní hodnotou Dostupné z Metodického portálu ISSN: ,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce mnohoúhelníku
VY_42_INOVACE_416_VZÁJEMNÁ POLOHA KRUŽNICE A PŘÍMKY Jméno autora VMMgr. Václav Hendrych Datum vytvoření VM prosinec 2012 Ročník použití VM 8. ročník Vzdělávací.
Kruh, kružnice Základní pojmy
Kruh, kružnice Základní pojmy
Vzájemná poloha paraboly a přímky
Vzájemná poloha dvou kružnic
Konstrukce trojúhelníku
Dostupné z Metodického portálu www. rvp
Název školy: Základní škola a Mateřská škola Lutín příspěvková organizace Autor: Mgr. Kateřina Mrázková Název: EU_32_MRA_M8_005 Téma: Matematika 8. ročník.
Bodová konstrukce hyperboly
Konstrukce trojúhelníku
Konstrukce pravoúhlého trojúhelníku pomocí Thaletovy kružnice,
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Vzájemná poloha paraboly a přímky
Mgr. Jaroslav Zavadil, Gymnázium Šternberk
K U F R Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Konstrukce trojúhelníku
Najdi dva stejné obrázky
Název učebního materiálu
Konstrukce trojúhelníku
IV. část – Vzájemná poloha dvou
1. Bodem, který leží na kružnici 2. Bodem, který leží mimo kružnici
Převody jednotek délky - 2.část
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Konstrukce trojúhelníku
Hyperoskulační kružnice hyperboly
Vzájemná poloha dvou kružnic
Konstrukce trojúhelníku
Vzájemná poloha dvou kružnic
Procenta % Prezentace je zaměřená na procvičování procent užitím trojčlenky. Obsahuje celkem řešených 15 příkladů. Mgr. Eva Černá, Plzeň Autor © Eva Černá.
Převody jednotek objemu − 2. část
Převody jednotek hmotnosti – 2. část
Vzájemná poloha kružnice a přímky
Transkript prezentace:

Vzájemná poloha dvou kružnic Kružnice Vzájemná poloha dvou kružnic Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Základní označení a pojmy k2(S2; r2 = 2,5 cm) k2 - kružnice S2 - střed kružnice k2 r2 - poloměr kružnice k2 k1(S1; r1 = 4 cm) k1 - kružnice S1 - střed kružnice k1 r1 - poloměr kružnice k1 Vzdálenost středů kružnic - úsečka S1S2 se nazývá středná.

1. r1 k1 r2 S1=S2 k2 S1=S2  r1 > r2  k1 ∩ k2 =  |S1S2| = 0 cm Kružnice, které mají společný střed, se nazývají soustředné kružnice. S1=S2 k2 Kružnice nemají žádný společný bod. S1=S2  r1 > r2  k1 ∩ k2 = 

Kružnice nemají žádný společný bod. 2. |S1S2| = 1 cm |S1S2| < r1 - r2 r1 k1 r2 S1 S2 k2 Kružnice nemají žádný společný bod. k1 ∩ k2 = 

Kružnice mají vnitřní dotyk. 3. |S1S2| = 1,5 cm |S1S2| = r1 - r2 r1 r2 k1 T S1 S2 Kružnice mají vnitřní dotyk. k2 t Kružnice mají jeden společný bod T; T je bod dotyku kružnic se společnou tečnou t. k1 ∩ k2 = T

Úsečka MN je společná tětiva kružnic. 4. |S1S2| = 3 cm N r1 - r2 < |S1S2| < r1 + r2 r1 r2 k1 S1 S2 k2 Úsečka MN je společná tětiva kružnic. M Kružnice mají dva společné body M, N; body M, N jsou průsečíky kružnic. k1 ∩ k2 = M, N

Kružnice mají vnější dotyk. |S1S2| = 6,5 cm 5. r1 - r2 < r1 + r2 = |S1S2| k2 r1 r2 k1 T S1 S2 t Kružnice mají vnější dotyk. Kružnice mají jeden společný bod T; T je bod dotyku kružnic se společnou tečnou t. k1 ∩ k2 = T

Kružnice nemají žádný společný bod. |S1S2| = 8 cm 6. r1 - r2 < r1 + r2 < |S1S2| r1 r2 S1 S2 k2 k1 Kružnice nemají žádný společný bod. k1 ∩ k2 = 