Ekvivalentní úpravy rovnic

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ekvivalentní úprava rovnic
Mgr. Šimon Chládek ZŠ Křížanská 80
Soustava lineárních nerovnic
Střední škola Oselce Škola: SŠ Oselce, Oselce 1, Nepomuk, Projekt: Registrační číslo: CZ.1.07/1.5.00/ Název: Modernizace.
Lineární rovnice s jednou neznámou Autor: Vladislava Hurajová.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Řešení lineárních rovnic s neznámou ve jmenovateli
Řešení lineárních rovnic o jedné neznámé
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Matematika Lineární rovnice
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lineární rovnice – 2. část
Řešení lineárních rovnic s neznámou ve jmenovateli
Definiční obory. Množiny řešení. Intervaly.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lineární rovnice Řešit rovnici znamená určit neznámou. Při řešení rce se snažíme neznámou dostat na jednu stranu a všechno ostatní na stranu druhou.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
ROVNICE KOŘENY ROVNICE EKVIVALENTNÍ ÚPRAVY
Ekvivalentní úpravy rovnic
VY_32_INOVACE_M-Ar 8.,9.07 Lineární rovnice Anotace: Žák si osvojuje řešení lineárních rovnic pomocí ekvivalentních úprav včetně zkoušky. Řeší lineární.
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
Soustavy dvou lineárních rovnic se dvěma neznámými
(řešení pomocí diskriminantu)
Ryze kvadratická rovnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Soustavy lineárních rovnic Matematika 9. ročník Creation IP&RK.
Jednoduché rovnice, užití druhé ekvivalentní úpravy
Tercie Rovnice Rovnice – lineární rovnice se zlomky podrobný postup na konkrétním příkladu.
Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu:CZ.1.07/1.4.00/ Šablona:III/2 Inovace a zkvalitnění výuky.
Nerovnice Ekvivalentní úpravy.
L i n e á r n í r o v n i c e II. Matematika 8.ročník ZŠ
Lineární rovnice Druhy řešení.
Řešení lineárních rovnic
Soustava lineárních nerovnic
Soustava dvou lineárních rovnic se dvěma neznámými
Lineární rovnice Druhy řešení.
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Lineární rovnice Druhy řešení.
Úvod do algebry (řešení jednoduchých rovnic)‏
Matematika 8.ročník ZŠ L i n e á r n í r o v n i c e I. Creation IP&RK.
Úvod do algebry (řešení jednoduchých rovnic)
Ekvivalentní úpravy rovnic
Úvod do algebry (řešení jednoduchých rovnic)
Rovnice - úvod ÚHLŮ.
Algebraické výrazy: počítání s mnohočleny
Soustava lineárních nerovnic
VY_32_INOVACE_09 09 rovnost, rovnice autor: Mgr. Tomáš Polák
Nerovnice Ekvivalentní úpravy - 2..
Nerovnice Ekvivalentní úpravy - 1..
Název školy: Základní škola Pomezí, okres Svitavy Autor: Kotvová Olga
Rovnost versus rovnice
Ekvivalentní úpravy rovnice
Matematika Lineární rovnice
Algebraické výrazy: počítání s mnohočleny
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Soustavy lineárních rovnic
Definiční obory. Množiny řešení. Intervaly.
Soustava dvou lineárních rovnic se dvěma neznámými
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Transkript prezentace:

Ekvivalentní úpravy rovnic Rovnice Ekvivalentní úpravy rovnic 1. část

Čemu říkáme rovnice? 4 4 x + 2 Levá strana rovnice L = = = Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou) tak, aby po jeho dosazení za proměnnou daná rovnost platila. Existuje-li takové číslo, nazývá se řešení nebo také kořen rovnice. 4 4 x + 2 Levá strana rovnice L = = = 6 Pravá strana rovnice P 6 = 6 Nyní se tedy naskýtá otázka. Jaké číslo můžeme dosadit do našeho příkladu za proměnnou, aby nastala rovnost? Řešením je tedy číslo . Zapíšeme: x = 4 Zdá se to být jednoduché? Kéž by bylo! Nás však čekají daleko složitější rovnice a při jejich řešení nám musí pomoci ekvivalentní úpravy.

Ekvivalentní úpravy rovnic Ekvivalentní = rovnocenný, stejný, se stejným účinkem, se stejnou platností Ekvivalentní úprava = úprava, při které rovnice původní i upravená rovnice mají stejné kořeny (řešení). Jinými slovy: Změní se matematický zápis rovnice, nikoli však rovnost stran a řešení. Rovnost dvou stran rovnice můžeme přirovnat k rovnováze na váhách. Klikněte na obrázek vah a na otevřené stránce naskládejte na obě misky vah příslušné počty cihliček dle zadání rovnice. Provedete-li to správně, nastane rovnováha. Pak zkuste libovolně přidávat či odebírat z obou mističek vah další cihličky a zjistěte, kdy nastává opět rovnováha.

Ekvivalentní úpravy rovnic Co jste zjistili? 1.) Rovnováha opět nastává, když na obě misky vah přidáme stejný počet odpovídajících cihliček. 2.) A stejně tak rovnováha opět nastává, když z obou misek vah odebereme stejný počet odpovídajících cihliček. A obdobně je to i s rovnicemi. Jen nepřidáváme a neubíráme cihličky na misky vah, ale přidáváme (přičítáme) nebo ubíráme (odečítáme) stejná čísla či výrazy od obou stran rovnice. Pojďme se na to podívat.

1. ekvivalentní úprava Jestliže k oběma stranám rovnice přičteme stejné číslo (výraz – jednočlen, mnohočlen), kořen rovnice se nezmění. / + 3 + 3 + 3 x – 3 = 5 Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu x – 3 = 5 Na obou stranách rovnice provedeme naznačené početní operace x = 8 Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. L = x – 3 = 8 – 3 = 5 x – 3 = 5 P = 5 nebo 8 – 3 = 5 L = P 5 = 5

2. ekvivalentní úprava Jestliže od obou stran rovnice odečteme stejné číslo (výraz – jednočlen, mnohočlen), kořen rovnice se nezmění. / - 3 - 3 - 3 x + 3 = 5 Zvolenou ekvivalentní úpravu poznamenáme vedle zápisu x + 3 = 5 Na obou stranách rovnice provedeme naznačené početní operace x = 2 Jestliže jsme kořen rovnice určili správně, po jeho dosazení za neznámou do levé i pravé strany zadání rovnice nastane rovnost. Říkáme, že provádíme zkoušku. L = x + 3 = 2 + 3 = 5 x + 3 = 5 P = 5 nebo 2 + 3 = 5 L = P 5 = 5

Poslední ekvivalentní úprava rovnic Vraťme se ještě jednou k analogii (podobnosti) rovnosti dvou stran rovnice s příklady na udržení rovnováhy na miskách vah. Opět naskládejte na obě misky vah příslušné počty cihliček dle zadání rovnice tak, aby nastala rovnováha. Pak začneme znovu experimentovat. Tentokrát zaměňte cihličky na levé a pravé misce. To, co jste skládali na levou misku, teď naskládejte na pravou a to, co jste skládali na pravou misku, naskládejte na levou. Tak vzhůru na to. Klikněte na obrázek vah a zjistěte, co se stane až cihličky přeskládáte.

3. ekvivalentní úprava L = P P = L Tak co jste zjistili tentokrát? 3.) Rovnováha na váhách se nezmění, ani když vyměníme obsah jednotlivých misek. A co to znamená pro rovnice? Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. x + 3 = 5 / - 3 - 3 - 3 L = P P = L / - 3 - 3 - 3 x + 3 = 5 5 = x + 3 x + 3 = 5 5 = x + 3 x = 2 2 = x

Ekvivalentní úpravy rovnic Shrňme si tedy ještě jednou všechny tři ekvivalentní úpravy: 1. Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. 2. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. Tak a teď se podívejme na jejich použití v praxi. Vypočítáme si pár jednodušších rovnic. Zkuste to sami, a pokud si nebudete vědět rady jak dál, klikněte myší a pomohu vám. Ukážu Vám další krok.

Na obou stranách rovnice provedeme naznačené početní operace. Kořeny rovnice se nezmění, jestliže k oběma stranám rovnice přičteme stejné číslo nebo mnohočlen. Příklad č. 1: X - 8 = 12 X - 8 = 12 /+ 8 X - 8 + 8 = 12 + 8 Na obou stranách rovnice provedeme naznačené početní operace. X = 20 Zk: L = x – 8 = 20 – 8 = 12 P = 12 L = P

Na obou stranách rovnice provedeme naznačené početní operace. Kořeny rovnice se nezmění, jestliže od obou stran rovnice odečteme stejné číslo nebo mnohočlen. Příklad č. 2: 6 = y + 5 6 = y + 5 /- 5 6 - 5 = y + 5 - 5 Na obou stranách rovnice provedeme naznačené početní operace. 1 = y Kořeny rovnice se nezmění, jestliže zaměníme levou a pravou stranu rovnice. y = 1 Zk: L = 6 P = y + 5 = 1 + 5 = 6 L = P

Příklad č. 3: 5x - 7 = 4x + 3 5x - 7 = 4x + 3 /+ 7 Zk: L = 5x – 7 = 5.10 – 7 = = 50 – 7 = 43 P = 4x + 3 = 4.10 + 3 = = 40 + 3 = 43 L = P

Celý předcházející příklad ještě jednou, ale s využitím zkráceného zápisu. 5x - 7 = 4x + 3 5x - 7 = 4x + 3 /+ 7 Přejde-li člen z jedné strany rovnice na druhou, změní se jeho znaménko na opačné: Z mínus na plus. - 7 + 7 5x = 4x + 3 + 7 A z plus na mínus. 5x = 4x + 10 /- 4x 4x - 4x 5x – 4x = + 10 x = 10 Zk: L = 5x – 7 = 5.10 – 7 = = 50 – 7 = 43 P = 4x + 3 = 4.10 + 3 = = 40 + 3 = 43 L = P

A teď už sami. - 3 + x = 1 - 3 + x = 1 / + 3 x = 1 + 3 x = 4 Zk: L = - 3 + 4 = 1 P = 1 L = P 0 = 3 + a 0 = 3 + a / - 3 0 - 3 = a - 3 = a a = - 3 Zk: L = - 3 + 4 = 1 P = 1 L = P

A ještě jeden. - 4u + 8 = 10 – 5u - 4u + 8 = 10 – 5u / + 5u - 4u + 8 + 5u = 10 u + 8 = 10 / - 8 u = 10 – 8 u = 2 Zk: - 4.2 + 8 = 10 – 5.2 - 8 + 8 = 10 – 10 0 = 0 Tolik tedy k prvním třem ekvivalentním úpravám. Příště nás čekají další dvě!