Rozcvička Urči typ funkce: Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Rozcvička Doplň chybějící souřadnici: Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce x y Narýsuj graf funkce: Vlastnosti funkce 9 graf – parabola D(f) = R H(f) = 0; vrchol paraboly v bodě V[0; 0] souměrná podle osy y klesající v D(f) = (-; 0 rostoucí v D(f) = 0; x = 0 – nejmenší hodnota fce = minimum x x 4 x x x -3 -2 -1 2 3 Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce x y Narýsuj graf funkce: Vlastnosti funkce graf – parabola D(f) = R H(f) = (-; 0 vrchol paraboly v bodě V[0; 0] souměrná podle osy y rostoucí v D(f) = (-; 0 klesající v D(f) = 0; x = 0 – největší hodnota fce = maximum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Rovnice: Vlastnosti kvadratické funkce graf – parabola D(f) = R parabola má vrchol V souměrná podle osy y je rostoucí i klesající má maximum nebo minimum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce v závislosti na a je-li a>0, potom má kvadratická funkce vždy minimum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce v závislosti na a je-li a<0, potom má kvadratická funkce vždy maximum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Narýsuj graf funkce f: y = - x2 urči největší hodnotu této funkce b) jaká je hodnota této funkce pro x = 2 c) pro která x je hodnota této funkce rovna (-1) d) v jakém intervalu je tato funkce rostoucí e) pro která x je hodnota této funkce největší Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Doplň hodnoty funkce y = 3x2 do tabulky: Kvadratická funkce Doplň hodnoty funkce y = 3x2 do tabulky: x - 3 1 2 -5 0,6 -0,8 -2 0,1 y Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] bod E nepatří do dané fce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Na grafu kvadratické funkce y = ax2 leží bod A[ -3 ; -18 ] b) B[ -2 ; -10 ] c) C[ 2 ; 2 ] Urči čemu se rovná a. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce Narýsuj: o -2 Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze
Kvadratická funkce - vrchol paraboly 2 -1 -2
Kvadratická funkce - vrchol paraboly Načrtni: 2 -1 Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze