Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Polymerní materiály. molekulární struktura tvar makromolekul střední molární hmotnost krystalinita přechodové teploty polarita polymerů základní fyzikální

Podobné prezentace


Prezentace na téma: "Polymerní materiály. molekulární struktura tvar makromolekul střední molární hmotnost krystalinita přechodové teploty polarita polymerů základní fyzikální"— Transkript prezentace:

1 Polymerní materiály

2 molekulární struktura tvar makromolekul střední molární hmotnost krystalinita přechodové teploty polarita polymerů základní fyzikální vlastnosti hořlavost polymerů

3 Historie 1493 –1496 – II. Kolumbova výprava do Ameriky 1736 – sazenice přírodního kaučuku se dostává do Evropy 1791 – první komerční využití – aplikace při výrobě nepromokavých plachet a pytlů pro přepravu pošty 1843, 1844 – Thomas Hancock, Charles Goodyear – vulkanizace kaučuku sírou 1888 – John Boyd Dunlop – patent pneumatiky 1910 – patentována výroba syntetického kaučuku 1938 – průmyslová výroba PA66 – NYLON současnost

4 Polymer - plast Polymer – makromolekulární látka

5 Polymer - plast Plast – polymer, maziva, stabilizátory, pigmenty, plniva, atd.

6 Příprava polymerů Většina polymerů je syntetizována z monomerů, které jsou připravovány převážně z ropy. Polymer vzniká následným řazením monomerů. Způsob jak k tomu dochází může být různý. Reakce probíhají za sebou – polyreakce.

7 Polyreakce Polymerace – molekuly monomeru obsahujícího dvojnou vazbu mezi dvěma atomy uhlíku se spojují řetězovým mechanizmem v polymer, nevzniká vedlejší produkt, velká rychlost reakce (řádově sekundy), vznikají makromolekuly různé délky, nejčastější typ reakce, př. PVC, PE, PP, PS, PMMA

8 Polyreakce Polyadice – struktura polymeru se liší od struktury monomeru, nevzniká vedlejší produkt, rychlost reakce malá, př. PUR, epoxidové pryskyřice

9 Polyreakce Polykondenzace – reagují spolu monomery různého druhu, vzniká vedlejší produkt, rychlost reakce je malá (i několik hodin), př. PA66, reaktoplasty

10 Hlediska pro rozdělení polymerů 1) organické anorganické 2) amorfní krystalické 3) termoplasty reaktoplasty elastomery

11 Chemická = molekulární struktura Monomery jsou nízkomolekulární sloučeniny umožňující vzájemným spojováním dvou nebo více vazebných míst vytváření makromolekuly.

12 Chemická = molekulární struktura Pokud monomer obsahuje pouze dvě místa (funkce), schopná tvořit kovalentní chemickou vazbu, vzniká polymer lineární. Při větším počtu míst mohou vznikat polymery rozvětvené nebo zesítěné, př. reaktoplasty.

13 Chemická = molekulární struktura CH 2 = CH 2 monomer – ethylen (plyn) Při určitých reakčních podmínkách T, p dojde k porušení dvojné vazby a z monomeru se stává monomerní jednotka, schopná se násobně spojovat. CH 2 = CH 2 - CH 2 - CH 2 - n [- CH 2 - CH 2 - ] [- CH 2 - CH 2 - ] n n – polymerační stupeň (1 000 – )

14 Chemická = molekulární struktura Homopolymer – je polymer složený z chemicky stejných jednotek s výjimkou koncových. Př. PE, PVC, PMMA. Kopolymer – vzniká syntézou dvou nebo několika odlišných monomerů, kopolymery se rozdělují podle umístění monomerních jednotek v makromolekulách na statistické, alternační, blokové a roubované. Př. PA66, reaktoplasty.

15 Chemická = molekulární struktura

16 Tvar makromolekul

17 Makromolekulární sítě vznikají spojováním lineárních nebo rozvětvených makromolekul, které obsahují dosud nevyčerpaná vazebná místa.

18 Tvar makromolekul Je dán funkčností monomerů, která rozhoduje o možnosti vzniku makromolekul lineárních, rozvětvených nebo zesítěných. Vliv teploty a tlaku při procesu výroby – např. u PE (vzniká PE lineární, rozvětvený – liší se krystalinitou).

19 Tvar makromolekul Plasty s lineárními makromolekulami jsou obvykle dobře tavitelné, v tuhém stavu se vyznačují houževnatostí, ve formě tavenin dobrou zpracovatelností. Snadno krystalizují. Př. PE, PP.

20 Tvar makromolekul Vlastnosti rozvětvených polymerů závisí na velikosti bočních řetězců, na jejich množství. S jejich zvyšujícím se počtem klesá hustota polymeru, snižuje se teplota měknutí, materiál je ohebnější a měkčí, zvyšuje se jeho rozpustnost a propustnost pro plyny, zvyšuje se tažnost a transparentnost.

21 Tvar makromolekul Je to způsobeno tím, že boční řetězce oddalují sousední makromolekuly, což má za následek pokles mezimolekulárních sil. Rozvětvením se zhoršuje pohyblivost molekul a tedy i tekutost taveniny. Snižuje se tendence ke krystalizaci, polymery mohou být až zcela amorfní. Př. PMMA, PS.

22 Tvar makromolekul Reaktoplasty obsahují molekuly zesíťované, příčné vazby jsou tvořeny chemickou vazbou. Vlastnosti závisejí na hustotě sítě – při vysoké hustotě je hmota tvrdá, má vysoký modul pružnosti, dobře snáší i zvýšené teploty, odolnost proti rázovému namáhání je nízká.

23 Tvar makromolekul Počet vazebných míst připadajících na jednotku délky makromolekuly schopné síťování rozhoduje o hustotě sítě, která je z nejvýznamnějších faktorů, majících vliv na fyzikální a mechanické parametry pryží a reaktoplastů.

24 Střední molární hmotnost Polymery jsou tvořeny soubory makromolekul o různé velikosti molární hmotnosti M(g/mol) jsou tzv. polydisperzní - tím se liší od nízkomolekulárních látek, u nichž jsou všechny molekuly stejně velké.

25 Střední molární hmotnost Rozdělení molárních hmotností je charakterizováno diferenciálními distribučními křivkami, stanovení je experimentálně náročné, polydisperzita závisí na podmínkách přípravy.

26 Střední molární hmotnost Z distribuční křivky vyplývá, že v polymerních soustavách jsou obsaženy makromolekuly různé velikosti. Díky tomu např. neexistuje ostrý bod T m a T g.

27 Střední molární hmotnost Diferenciální distribuční křivka může mít různý tvar – čím je užší, tím menší rozptyl vykazují molekuly kolem střední hodnoty a polymer je z hlediska velikosti molekul homogennější.

28 Střední molární hmotnost Tvar křivky závisí na druhu polyreakce při přípravě polymeru polykondenzace – užší distribuční křivky, polymerace širší. Polymery s úzkou distribuční křivkou vykazují vyšší modul pružnosti, vyšší pevnost a houževnatost.

29 Krystalinita polymerů Schopnost dosáhnout určitého stupně uspořádanosti a vykazovat určitou nadmolekulární strukturu. Amorfní polymery – makromolekuly zaujímají zcela nahodilou pozici.

30 Krystalinita polymerů Krystalické – semikrystalické – řetězce makromolekul jsou pravidelně uspořádány. Schopnost vytvářet pravidelně naskládané molekulární útvary – krystality, souvisí s pravidelností geometrické stavby polymerních řetězců. Ve skutečnosti však nedochází k úplné krystalizaci – existují vedle sebe oblasti krystalické i amorfní (poruchy). w k – stupeň krystalinity, udává se v %

31 Krystalinita polymerů Schopnost polymerů vytvářet uspořádanou strukturu závisí na - geometrickém tvaru řetězců - objemu postranních substituentů - počtu rozvětvení - délce postranních řetězců - ohebnosti řetězců - polaritě makromolekul Obecně vzniká krystalická struktura tím snadněji, čím je molekula symetričtější, řetězce hladší a pravidelnější.

32 Krystalinita polymerů

33

34

35 Semikrystalické - houževnaté - pevnost se zvyšuje s rostoucí krystalinitou - v organických rozpouštědlech se rozpouštějí špatně nebo vůbec - mléčně zakalené až bílé PE, PP

36 Krystalinita polymerů Amorfní - tvrdé a křehké - vysoká pevnost - průhledné - dobře rozpustné v organických rozpouštědlech PS, PMMA, PC

37 Krystalinita polymerů Kromě strukturních předpokladů jsou pro krystalizaci nutné i vhodné kinetické podmínky, které souvisejí s pohyblivostí makromolekul nebo jejích částí. Ty závisí především na teplotě, se kterou souvisí dva faktory rozhodující o tvorbě krystalické fáze: rychlost nukleace rychlost růstu krystalitů

38 Krystalinita polymerů Nukleace znamená tvorbu krystalických zárodků, na nichž rostou krystality. Pod T m a nad T g k nukleaci nedochází. Se snižující se teplotou (pod T m ) rychlost nukleace roste až k maximu, směrem k T g se opět snižuje v důsledku snižující se pohyblivosti makromolekul. Obdobnou závislost vykazuje i rychlost růstu krystalitů.

39 Krystalinita polymerů Druhou veličinou ovlivňující průběh krystalizace je doba, kterou má polymer k dispozici. Při pomalém ochlazování polymeru z T m se vytváří malé množství zárodků a struktura je hrubozrnná. K dosažení jemnozrnné struktury musí krystalizace probíhat při takové teplotě, kdy se tvoří velké množství zárodků.

40 Krystalinita polymerů Má-li výrobek dosahovat co nejlepších mechanických parametrů, je nutné řídit krystalizaci tak,aby bylo dosaženo nejen co nejvyššího stupně krystalinity, ale aby se současně získala jemnozrnná struktura. Toho lze docílit přídavkem práškových anorganických látek – tzv. nukleačních přísad. Primární krystalizace, sekundární krystalizace.

41 Přechodové teploty

42 T g – teplota skelného přechodu (teplota zeskelnění, bod zvratu II. řádu). Pod ní se polymer nachází ve stavu sklovitém – je tvrdý, křehký, má vysoký modul pružnosti. Nad ní je ve stavu kaučukovitém. I malá napětí způsobují deformace až o několik set %. V přechodové oblasti se modul mění až o 3 řády, koeficient teplotní roztažnosti až o 100%. Pod teplotou T g postačuje tepelná energie makromolekul pouze k jejich vibracím, polymer je tvrdý a křehký. Při T g se uvolňuje rotační pohyb segmentů molekul a hmota nabývá kaučukovitého charakteru.

43 Přechodové teploty T g závisí na ohebnosti řetězce, na symetričnosti základních článků makromolekuly, na velikosti mezimolekulárních sil. Objemné substituenty v řetězci porušují jeho symetrii a snižují ohebnost makromolekul, což se projeví zvýšením T g. T g je možné ovlivnit přídavkem změkčovadel – sníží se mezimolekulární soudržnost a tím i T g.

44 Přechodové teploty

45 T m – teplota tání, bod zvratu I.řádu. Při T m nabudou tepelné vibrace krystalové mřížky takové intenzity, že se krystality začnou rozpadat – probíhá jejich tání – to je doprovázeno změnou fáze. Samotná výše T m závisí na velikosti makromolekul (tedy molekulové hmotnosti), na velikosti mezimolekulárních sil. U většiny krystalických polymerů je možné ztotožnit T m a T f. Nad T m leží oblast zpracovatelnosti krystalických polymerů.

46 Přechodové teploty Protože experimentální stanovení T g je náročné (měření závislosti vhodné fyzikální veličiny na teplotě), v praxi se lépe stanovuje T b – teplota křehnutí. Stanoví se smluvní materiálovou zkouškou, která spočívá v nalezení takové teploty, při níž se stane polymer natolik křehký, že zkušební těleso namáhané rázem se poruší křehkým lomem. Výsledek je závislý na podmínkách zkoušky.

47 Přechodové teploty T f – teplota viskózního toku, při této teplotě hmota ztrácí své kaučukovité vlastnosti, modul pružnosti klesá na nulu a hmota se mění na vysoce viskózní kapalinu. Je to teplota nad níž leží oblast zpracovatelnosti plastů.

48 Polarita polymerů Vyplývá z polarizovatelnosti kovalentních vazeb mezi atomy v makromolekulách. Různá elektronegativita prvků je příčinou odlišné afinity elektronů k atomům vytvářejícím kovalentní vazby. Posunem elektronů na elektronegativnější atomy vznikají dipóly, z nichž jsou u polymerů nejvýznamnější následující.

49 Polarita polymerů C ¯– H + N + – H ¯ C + – F ¯ O ¯ – H + C + = O ¯ Si + – O ¯ C + = N ¯ - CH CF 2 -

50 Polarita polymerů Tvorba dipólů nevede ke vzniku + nebo – iontů a tak celistvost molekul zůstává zachována. Pokud jsou monomerní jednotky polymerů symetrické a tvoří je stejné skupiny atomů, pak se vzniklé dipóly uvnitř navzájem kompenzují. Takové polymery se projevují ve svých fyzikálních a chemických vlastnostech jako nepolární. Př. PE, PTFE, silikonový kaučuk.

51 Polarita polymerů U makromolekul s osamocenými dipóly, které nemohou být vykompenzovány analogickými skupinami, dochází ke vzniku polarity. S polárností souvisí také elektroizolační vlastnosti. U polárních polymerů se elektrická vodivost zvyšuje zejména z důvodu jejich navlhavosti. Př. PA. Nepolární polymery se naproti tomu používají jako dielektrik.

52 Základní fyzikální vlastnosti Hustota Tepelné vlastnosti - teplotní rozsah použitelnosti - teplotní roztažnost - tepelná vodivost Elektrické vlastnosti Optické vlastnosti

53 Hustota Je mnohonásobně menší než u kovů – vliv chemického složení (základem polymerních řetězců jsou prvky s nízkou atomovou hmotností – C, H, O, S, N). Obecně závisí hustota kromě chemického složení také na nadmolekulární struktuře (s rostoucí krystalinitou roste hustota), ale i na druhu a množství přísad (plniva nebo lehčené polymery). Nejtěžší - fluoroplasty 2100 až 2300 kg/ m 3

54 Teplotní rozsah použitelnosti Amorfní polymery jsou použitelné do T g Krystalické do T m to jsou však teoretické hranice z praktických důvodů se teploty volí s ohledem k mechanickému namáhání a spolehlivé funkci součásti amorfní: T g – (10 o C až 20 o C) semikrystalické: T m – (20 o C až 40 o C)

55 Teplotní roztažnost Určuje součinitel délkové teplotní roztažnosti α, je to relativní zvětšení délky tělesa vztažené na 1K (10 -6 /K) Závisí na druhu polymeru, jeho struktuře, složení, uvažované teplotní oblasti. Obecně je zvětšování objemu hmoty při zvyšování teploty podmíněno zeslabováním mezimolekulárních sil a zvětšováním pohyblivosti makromolekul. Obecně je α tím menší, čím je stupeň krystalinity větší Nejmenší α mají reaktoplasty.

56 Tepelná vodivost Určuje součinitel tepelné vodivosti λ (W/m.K). Závisí na schopnosti látky přenášet tepelný pohyb z jedné částice na druhou. Tato schopnost souvisí s velikostí sil, kterými jsou částice hmoty navzájem poutány. U polymerů je tepelná vodivost malá – 100 krát menší než ocel. Špatná tepelná vodivost způsobuje problémy při zpracování materiálu – dlouhá doba ohřevu a ochlazování.

57 Elektrické vlastnosti Polymery jsou dobré elektrické izolanty. Vodivost lze ovlivnit vodivými přísadami. V důsledku vysokého izolačního odporu se snadno nabíjejí statickou elektřinou.

58 Optické vlastnosti Polymery jsou bezbarvé nebo čiré, pokud neobsahují pigmenty barviva nebo plniva. Amorfní – čiré. Semikrystalické více či méně mléčně zakalené (představují heterogenní systém, krystalické oblasti mají n = 1,52-1,58, amorfní n = 1,49), intenzita zakalení závisí na stupni krystalinity. Index lomu při 20 o C je v intervalu 1,4 –1,6 a málo závisí na vlnové délce. Bezbarvé polymery se dají barvit organickými barvivy nebo pigmenty, většinou se nebarví již hotové výrobky.

59 Hořlavost polymerů Závisí na: 1)Chemickém složení výchozích látek (PE, PTFE) 2)Struktuře makromolekuly a její relativní molekulové hmotnosti 3)Druhu a množství přísad ve výrobku 4)Rozměru a tvaru výrobku 5)Množství kyslíku potřebného k hoření 6)Velikosti spalného tepla a tepelné vodivosti polymeru

60 Hořlavost polymerů Hořlavost polymerů lze ovlivnit: 1)Přídavkem aditivních retardérů hoření (skleněná vlákna) 2)Včleněním reaktivních retardérů hoření do makromolekulárního řetězce (halogensloučeniny – F, Cl, Br, N, Si, MgO, Al 2 O 3 ) 3)Ochrannými pěnivými nástřiky Nejhořlavější: PE, PP, PMMA


Stáhnout ppt "Polymerní materiály. molekulární struktura tvar makromolekul střední molární hmotnost krystalinita přechodové teploty polarita polymerů základní fyzikální"

Podobné prezentace


Reklamy Google