Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilJindřiška Vacková
1
Center for Machine Perception Department of Cybernetics, Faculty of Electrical Engineering Czech Technical University in Prague Solving Minimal Problems in Computer Vision Zuzana Kukelova, Tomas Pajdla, Martin Bujnak with contribution of M. Byrőd, K. Josephson, K. Åstrőm Lund University
2
2/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Many problems in computer vision can be formulated using systems of polynomial equations The classical minimal problem – relative camera pose determination 5 matches are necessary and sufficient => 5pt relative pose problem Motivation
3
3/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Motivation Minimal problems Relative camera pose determination for cameras with radial distortion => more difficult systems of polynomial equations systems are not trivial => special algorithms have to be designed to achieve numerical robustness and computational efficiency
4
4/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague One polynomial equation in one unknown - Companion matrix 1 equation in 1 variable companion matrix eigenvalues... a simple rule Eigenvalues = solutions
5
5/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague System of linear polynomial equations - Gauss elimination System of n linear equations in n unknowns We can represent this system in a matrix form Perform Gauss-elimination reduces the matrix to a triangular form backsubstitution
6
6/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague System of m polynomial equations in n unknowns A system of m polynomial equations in n variables with coefficients from Our goal is to solve this system Many different methods Numerical methods Polynomial eigenvalue solution Symbolic methods Grőbner basis methods Resultant methods
7
7/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague System of m nonlinear polynomial equations in n unknowns - Grőbner basis method System of m linear equations in n unknowns Idea construct a new system of polynomial equations with the same solutions as the initial one, but with a simpler structure Grőbner bases have the same solutions but are easier to solve
8
8/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague System of m nonlinear polynomial equations in n unknowns - Grőbner basis method The reality is much harder Computation of Grőbner bases is a NP-complete in m, n (takes very long time to compute) is an EXPSPACE-complete problem (needs huge space to remember intermediate results) Fortunately in some cases, Grőbner bases can be obtained easier Equations Grőbner basis no simple way
9
9/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague System of m nonlinear polynomial equations in n unknowns - Grőbner basis method How to find coefficients? Bucheberger’s algorithm ~ generalized Gauss elimination
10
10/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Grőbner basis method w.r.t. lexicographic ordering ~ generalized G-J elimination General approach for constructing the Grőbner basis Add new equations – monomial multiples of initial equationsPerform Gauss-Jordan elimination
11
11/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague System of m polynomial equations in n unknowns – An action matrix m equations in n unknowns Buchberger’s algorithm Generalized companion matrix Eigenvectors Solutions Grőbner basis (grevlex ordering) Polynomial division Eigenvectors ~ solutions
12
12/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Grőbner basis method Computing Grőbner basis (even in grevlex ordering) may be very hard Example: 4 polynomials, 3 variables, degree 6, small integer coeffs Have extremly simple Grőbner basis
13
13/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Grőbner basis method However when computed by the Buchberger’s algorithm over the rational numbers w.r.t. the grevlex ordering x > y > z, the following polynomial appears during the computation: ~ 80,000 digits
14
14/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Grőbner basis method C o m p l e x i t y Input Grőbner basis General algorithms can construct all GBs but often generate many complicated polynomials G e n e r a l a l g o r i t h m S p e c i f i c a l g o r i t h m
15
15/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Specific Grőbner basis algorithm Find a short path towards the Grőbner basis which is independent from the actual coefficients, implement it eficiently run long, coefficient growth numerical problems fast, no coefficient growth, no numerical problems
16
16/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Specific Grőbner basis algorithm Use a computer algebra system (Macaulay2) to compute the Grőbner basis in a finite field (fast!) for random coefficients and remember the path Implement (hard-code) the path efficiently in Try to avoid numerical instability J.C. Faugere’s F4 algorithm Single G-J Elimination (often) makes algorithms more robust than repeating G-J Elimination & multiplication
17
17/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Minimal problems for cameras with radial distortion Three new minimal problems for estimating one-parameter radial distortion model and epipolar geometry from point correspondences 1. Minimal algorithm for uncalibrated cameras with same radial distortion and 8 point correspondences (IEEE CVPR 2007) 2. Minimal algorithm for partially calibrated cameras with same radial distortion and 6 point correspondences (IEEE CVPR 2008) 3. Minimal algorithm for uncalibrated cameras with different radial distortions in each image and 9 point correspondences (IEEE CVPR 2008)
18
18/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Minimal problems for cameras with radial distortion One parameter division model (Fitzgibbon) Epipolar constraint We use the constraint we obtain systems of algebraic equations first simplify by eliminating some of the variables solve using a Grőbner based method result in the systems of algebraic equations simplified by eliminating some of the variables solved using a Groebner basis technique. Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague - uncalibrated cases - calibrated case
19
19/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Correct radial lens distortion for uncalibrated cameras with different radial distortions and in each image using the minimal number of point correspondences => 9 correspondences 10 equations in 10 variables Simplifying these equations => 4 equations in 4 variables (2nd,two 3rd,5th degree) 24 solutions one G-J elimination of 178x203 matrix (8th degree equations) runs ~ 16ms Minimal algorithm for uncalibrated cameras with different radial distortions (CVPR 2008) Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague
20
20/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Real images, minimal algorithm for cameras with different distortions 66% cutouts from omnidirectional images taken with two different cameras Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Results Before correction After correction Left image Right image
21
21/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Results Before correction After correction Left image Right image Cutout from the omnidirectional image and the perspective image
22
22/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Given four 2D-to-3D correspondences, estimate camera position, orientation and recover the camera focal length Generalization of existing P3P and P4P problems for fully calibrated cameras Planar + general 3D scenes P4P problem for camera with unknown focal length (CVPR 2008) f o X1X1 X2X2 X3X3 X4X4 x1x1
23
23/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague 5 equations in 4 unknowns (focal length + 3 depths) Solve these equations using the method based on Grőbner basis and generalized companion matrix one G-J elimination of 78x88 matrix runtime ~1ms P4P problem for camera with unknown focal length (CVPR 2008)
24
24/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Polynomial eigenvalue method Rewrite in a matrix form Rewrite in a form ~Polynomial eigenvalue formulation
25
25/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Given 6 point correspondences in two images, find relative position, orientation and focal length of partially calibrated camera Solutions: Stewenius et al. CVPR 2005 - Grőbner basis solution 6 point focal length problem Polynomial eigenvalue solution (BMVC 2008)
26
26/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Epipolar constraint Parametrize the fundamental as a linear combination of a basis of the space of all compatible fundamental matrices Singularity of F Trace constraint of E 10 3 rd and 5 th order equations in 3 variables and with 30 monomials 6 point focal length problem Polynomial eigenvalue solution (BMVC 2008)
27
27/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague Equations can be rewriten where are known square coefficient matrices Quadratic polynomial eigenvalue problem solve using standard efficient algorithms, for example MATLAB function 6 point focal length problem Polynomial eigenvalue solution (BMVC 2008)
28
28/28 Zuzana Kúkelová kukelova@cmp.felk.cvut.cz, Tomáš Pajdla pajdla@cmp.felk.cvut.cz, Center for Machine Perception, Czech Technical University in Prague No general robust and efficient method for solving systems of polynomial equations Special algorithms have to be designed to achieve numerical robustness and computational efficiency http://cmp.felk.cvut.cz/minimal Conclusion THANK YOU FOR YOUR ATTENTION http://cmp.felk.cvut.cz/minimal
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.