Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Výpočty v rovinných obrazcích
Matematika 8.ročník ZŠ Pythagorova věta Řešené příklady I. Výpočty v rovinných obrazcích Creation IP&RK
2
Autorkou těchto řešených příkladů (včetně počítačového zpracování) je Mgr. Bohumila Zajíčková ze ZŠ J. J. Ryby v Rožmitále pod Třemšínem ( . Autorce patří dík za velmi kvalitní zpracování probírané látky. Z důvodu obtížnější dostupnosti 6 prezentací jsem si dovolil příklady převzít a sjednotit. V žádném případě nechci paní učitelce upírat autorská práva a při přípravě dalších, podobně zdařilých, výukových materiálů přeji mnoho zdaru.
3
Zapiš Pythagorovu větu
M P S . . n m k s l p o M N . K L R n2 = m2 + o2 m p2 = r2 + s2 k2 = l2 + m2 C C C b . . a b a b a A c B A c B A c B c2 = a2 + b2 a2 = b2 + c2 b2 = a2 + c2
4
Zapiš Pythagorovu větu pro výpočet strany označené otazníkem
X z Y O . . n k l m y x=? . M o=? N K L m=? Z o2 = n2 - m2 m2 = k2 - l2 x2 = z2 + y2 C C C . . b=? a a b a=? b A c B A c B A c=? B b2 = c2 - a2 c2 = a2 - b2 a2 = b2 - c2
5
Vypočítej délku úhlopříčky obdélníku, jestliže jeho strany měří:
a = 10 cm, b = 24 cm u2 = u2 = u = u = 26 cm b=10 cm b=10 cm u = ? . a=24 cm a=24 cm Úhlopříčka obdélníku měří 26 cm.
6
Vypočítej délku strany obdélníku a,
jestliže strana b = 17 cm a úhlopříčka u = 145 cm. a2 = a2 = a = a = 144 cm u=145 cm b=17 cm . a = ? Strana a měří 144 cm.
7
Vypočítej poloměr kružnice opsané obdélníku, jestliže jeho strany měří:
a = 8 cm, b = 15 cm Př. 3 u2 = u2 = u = u = 17 cm r = 17 : 2 = 8,5 cm d=u= ? b=15 cm r = ? S k . a=8 cm d = 2.r Poloměr kružnice opsané obdélníku je 8,5 cm.
8
Vypočítej délku úhlopříčky a poloměr kružnice opsané čtverci se stranou
a = 6 cm. Př. 4 u2 = u2 = u = u = 8,49 cm r = 8,49 : 2 = 4,24 cm r=? u= ? a=6 cm r=? S k . r=u:2 a=6 cm Úhlopříčka čtverce je 8,5 cm a poloměr kružnice opsané je 4,2 cm.
9
Vypočítej délku strany čtverci, když jeho úhlopříčka u =18 cm.
a = 12,7 cm u=18 cm u=18 cm S a . a=? Strana čtverce měří 12,7 cm.
10
Vypočítej obvod čtverce, jestliže kružnice opsaná tomuto čtverci má
poloměr r = 10 cm. o=? a2 = a2 = a = a = 14,14 cm a=? r=u:2 S a . k r=10 cm r=10 cm r=10 cm r=10 cm o = 4.a a=? o = 4.14,14 o = 56,6 cm Obvod čtverce je 56,6 cm.
11
Př. 7 Vypočítej délku strany kosočtverce s úhlopříčkami e =18 cm a f = 80 cm. D C a2 = a2 = a = a = 41 cm f=80 cm e=18 cm S a= ? . 40 cm 9 cm A a= ? B Strana kosočtverce měří 41 cm.
12
Př. 8 Vypočítej výšku v na základnu
rovnoramenného trojúhelníku, jestliže základna z = 8 cm a rameno r = 41 mm. v2 = r2 - r=41 mm r=41 mm v = ? v2 = 412 – 402 v2 = 1681 – 1600 v = v = 9 mm . 40 mm z=80 mm Výška na základnu rovnoramenného trojúhelníku měří 9 mm.
13
Př. 9 Vypočítej základnu z rovnoramenného
trojúhelníku, jestliže rameno r = 5 cm a výška v = 14 mm. z = 2.x x2 = r2 – v2 r=5 cm r=5 cm x2 = 52 – 1,42 x2 = 25 – 1,96 x = x = 4,8 cm z = 2. 4,8 = 9,6 cm v=1,4 cm . x=? z = ? Základna rovnoramenného trojúhelníku měří 9,6 cm.
14
Př. 10 Vypočítej rameno r rovnoramenného
trojúhelníku, jestliže základna z = 18 cm a výška v = 12 cm. r2 = v2 + r = ? v=12 cm r2 = r2 = r = r = 15 cm . 9 cm z=18 cm Rameno rovnoramenného trojúhelníku měří 15 cm.
15
Př. 11 Vypočítej obsah rovnoramenného trojúhelníku, jestliže základna z = 16 cm a rameno r = 17 cm. S= ? v = ? v2 = v2 = v = v = 15 cm r=17 cm r=17 cm r=17 cm v = ? . 8 cm S = 8.15 S = 120 cm2 z=16 cm Obsah rovnoramenného trojúhelníku je 120 cm2.
16
Př. 12 Vypočítej obvod rovnoramenného trojúhelníku, jestliže základna z = 32 cm a výška v = 12 cm. o = ? o = z +2.r r = ? r2 = r2 = r = r = 20 cm r = ? r = ? o = o = 72 cm v=1,2 cm v=1,2 cm . 16 mm z=32 cm Obvod rovnoramenného trojúhelníku je 72 cm.
17
Př. 13 Vypočítej výšku rovnostranného trojúhelníku, jestliže strana a = 10 cm. v2 = a2 - v = ? a=10 cm a=10 cm a=10 cm v2 = v2 = v = v = 8,66 cm v = ? . 5 cm a=10 cm Výška rovnostranného trojúhelníku měří 8,7 cm.
18
K O N E C I. části
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.