Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilIvana Hrušková
1
Koncept násobení Didaktika se má vyznat v tom, jak se v kontextu kultury transformuje subjektivní obsah mysli prostřednictvím vyučování a učení. vedcich/ sdileni-vedomosti
2
Jednotky transformace obsahu v učební situaci prekoncept / představa – výraz – koncept
ZÁŽITEK SITUACE PREKONCEPT KONCEPT PŘEDSTAVA VÝRAZ VÝZNAM - komunikace Kontext – možný svět v rámci dané kultury
3
Modality existence obsahu – koncept v pojetí didaktiky
P - subjektivně uchopený obsah (představa, prekoncept – P) Q – výraz R – reálný objekt označený výrazem Vědomí obsahu P předpokládá vzájemné poznávání obsahu mysli prostřednictvím společného jazyka. Jinými slovy, k tomu, aby lidský subjekt věděl, že si myslí či představuje určitý obsah, musí znát a umět používat výraz Q srozumitelný i jiným lidem. V aplikaci na výuku to znamená, že o obsahu, kterému žák má rozumět, se má umět dorozumět s druhými lidmi. Tuto skutečnost lze schematicky zapsat jako ekvivalenci QX~QY, přičemž QX a QY jsou výrazy použité různými mluvčími pro tentýž předmět R. Tehdy platí vztah P~QX~QY~R. (Slavík & Janík 2012) PX PY R QX QY SUBJEKTIVNÍ MODALITA obsah v psychice INTERSUBJEKTIVNÍ MODALITA obsah v sociální interakci OBJEKTIVNÍ MODALITA obsah ve fyzickém světě kontext: kultura, obor
4
Koncept, prekoncept – představa
Představa – prekoncept Vysvětluje subjektivní (časově a místně lokalizovaný) moment existence obsahu. Výraz Vysvětluje subjektivní akt vyjádření, jímž se obsah stává intersubjektivně uchopitelným. Význam, koncept, pojem Vysvětluje intersubjektivní shody při zacházení s obsahem a podchycuje ideální měřítko shod – objektivitu (Janík; Slavík 2009, s. 122, Slavík, Chrz, Štech et al. 2013, s. 64 – 67, 90). Prekoncept je subjektivním předpokladem konceptu: konkretizuje jeho existenci v paměti a v chování jednotlivých lidí. Koncept je intersubjektivním předpokladem prekonceptu: podmiňuje interakci, komunikaci a sdílení prekonceptů. Nemohli bychom uvažovat o tom, že prekoncepty jsou mezi lidmi vzájemně porovnatelné, kdybychom nebrali v úvahu koncept jako ideální bod jejich vzájemné sociální konvergence.
5
Koncept, procept Koncept Procept
zážitkové a interpretační pole výrazu, které je předpokladem pro interpretaci a komunikaci obsahu. Koncept má charakter pojmu, ale protože subjektivně existuje pouze prostřednictvím prekonceptů, zahrnuje smyslové nebo kinestetické představy a motorické operace, kterými jsou tvořeny výrazy a zprostředkovány významy při společné činnosti s věcmi. Koncept je přístupný jen prostřednictvím výrazové konstrukce a její struktury. Procept amalgamizace aktuálního dynamického procesu s relativně nadčasovým statickým konceptem (Gray; Tall 1994, s. 116 n., Hejný 2003, s. 26 n.). Elementární procept (elementary procept) Amalgám: konstrukčního procesu, ideálního objektu vytvořeného tímto procesem výrazu, který reprezentuje jak proces, tak objekt (Gray; Tall 1994, s. 121). Hejný (2003, s. 27): např. elementární procept zapsaný „3 + 2“ lze pojímat zároveň jako proces sčítání i koncept součtu.
6
Prekoncept, představa Prekoncept Představa
subjektivní ekvivalent konceptu: individuálně osobitá, sdělitelná jednotka obsahu v duševní realitě subjektu, kterou lze vyjadřovat, pojmenovat ji nebo ji vysvětlovat. Piaget (1972, s. 224): infralogický předobraz pojmu zabarvený subjektivitou představy, senzomotorickými komponentami a ludickou symbolikou. Představa subjektivní moment existence obsahu ve vědomí analogie a re-kreativní (recreative) protějšek a doplněk (counterpart) smyslového nebo pohybového zážitku nebo přesvědčení, jenž autorovi dovoluje komplexně si vybavovat anebo fantazijně přetvářet určitý obsah (Curie; Ravenscroft 2011, s. 11 n., s. 100 n. aj.). Analogie je zde chápána v Aristotelském duchu jako nenáhodná významová souvztažnost mezi různými způsoby existence obsahu na základě poměru nebo úměrnosti. Např. podíl 6 ku 3 je analogie podílu 10 ku 5, protože oba lze interpretovat společným významem jako stejnou úměrnost: 2. Podobně ploutve ryb jsou analogií křídel ptáků, protože obojí lze interpretovat společným významem jako končetiny sloužící k pohybu máváním v tekutém (tj. vodním nebo plynném) prostředí.
7
Konceptová integrace – blending
Matematika Logicko-matematické operace Číselné operace Generický prostor (hledisko, konceptuální rámec integrace): abstrakční zdvih Komparativní spojnice separovaných oblastí zkušenosti Integrační prostor Vstup 2 Vstup 1 Historie utváření konceptu kalkulací (Fauconnier, G.; Turner, M. 2002) Konceptová integrace (blending) vstupů, které kombinují určité smyslově vnímatelné prvky (části a celky) s čísly různého typu a na tomto základě generují určité operace. Např. integrace mentálního prostoru (vstupu) celých čísel a mentálního prostoru (vstupu) proporcí objektů vede prostřednictvím generického prostoru logicko-matematických operací ke kategorizaci všech dílčích částí objektů jako čísel – tak vzniká integrovaný koncept dělení. Dejme tomu, jeden koláč rozčleněný do šesti částí lze rozdělit po třech částech na dva talíře. Tentýž koláč rozčleněný do dvanácti částí lze rozdělit po šesti částech také na dva talíře. Tímto způsobem např. 6:3, 12:6 a 18:9 vede ke stejnému důsledku – k číslu 2, které vystihuje stejný výsledek kategorizace ve „směsi“ čísel a dílčích částí objektů. Tak se postupně ukazuje pravidlo dělení. Po jeho zvládnutí na malých číslech lze další varianty postupně domýšlet již bez vazby na konkrétní operace. Jednotky – jména Jednotky – kvantity Čísla Přidávání Seskupování Sčítání Opakuj tolik-krát přidání téhož množství →Násobení
8
Problém konceptové integrace
Jak odvodit pravidlo? Kristýna: No, že mně to vyjde čtyři tisíce tři sta sedmdesát pět. A já si dám tady čárku. U: A proč právě sem? Kristýna: No, eh… U: To máte vědět všichni ze skupiny. Jájo, násobili jsme toto; proč právě sem, proč ne o jedno víc nebo míň? ... Pojď to ukázat. Jája: Tady jsou dvě číslice za tou čárkou, tak prostě přeskočím dvě číslice i tady. […] U: Jo? Rozumíme? Bereš to, Martine? Martin: A je to na co? To jsem nepochopil. U: Takže ještě jednou mu to vysvětlete, holky. Jája: No jako že tady za tou desetinnou čárkou kolik je číslic, tolik tady přeskočím těch číslic. Tady jsou dvě číslice, tak tady udělám tu čárku tady. 3,52 * 6,18 28,16 21,12 21,7536 1 2 3 4 Kristýnin zápis Lucky zápis Miskoncept? 2,8 * 2,8 224 56 7,84 1 2 3 4 Pravidlo?
9
Koncept SČÍTÁNÍ → koncept NÁSOBENÍ
Přidávej: / a / je // (spojovací výraz – „a“). / + / = // (součet – „+“) = 2 Přidávej – opakuj přidání téhož množství: = 6, = 9, = 8 Opakuj tolik(n)-krát přidání téhož množství: n*2 3 * 4 = /// vezmi a opakuj 4krát = //// vezmi a opakuj 3krát Při sčítání vyšších řádů než jednotky lze sčítat jednotky stejného řádu ve sloupci. Pokud přitom dojde k přechodu do vyššího řádu („přetečení“), je nutné tento řád přičíst („držím si jedničku, dvojku…“) Při násobení lze využít principu sčítání do sloupců – nejprve se v řádku násobí, pak se ve sloupci sčítá. Při násobení čísel vyšších řádů než jednotky se násobí každá číslice, přičemž se získané násobky sčítají ve sloupci s ohledem na odpovídající řád, ve kterém číslice figuruje – to je vyjádřeno posunem v řadě číslic na každém následujícím řádku: 3*67 = (3*7) + (3*6*10) = (2*10 + 1) + 180 Desetinná čísla násobíme stejně jako čísla přirozená. Ve výsledku oddělíme tolik desetinných míst, kolik jich mají oba činitelé dohromady.
10
Absolutní využití – zneužití, vykořisťování
Metafora Kantova metafora „Absolutistický stát je ruční mlýn“ Hlavní prvek nadřazeného generického prostoru: obecný pojem mechanismus. Mechanismus: pohyblivá soustava částí, která během stále se opakující procedury přeměňuje určité objekty z počátečního do výsledného stavu. Pojem mechanismus v sobě sjednocuje konkrétní i abstraktní momenty – znamená totiž jak materiální zařízení či stroj, tak stereotypní proces. Proto vhodně provazuje konkrétní smyslovou zkušenost s jejími abstrakcemi. Mechanismus je kromě toho obvykle spojován s představou činnosti ve prospěch někoho – ve prospěch určitého aktéra, jímž je mechanismus ovládán. Tím se nabízí možnost vložit do integračního prostoru roli majitele stroje společně s rolí panovníka: „majitele“ absolutistického státu. Dvě vnořené metafory vyprodukované v integračním prostoru. První z těchto vnořených metafor, jak objasňuje Mácha zní „stát je stroj“. Je to stroj ovládaný aktérem – absolutistickým panovníkem, který „otáčí klikou mlýna“. V inferenčním souladu s touto představou je druhá vnořená metafora: „obyvatel státu je obilné zrno“. Implikuje představu mechanického využití do posledního zlomku rozdrceného těla. A nakonec i představu pozření, pohlcení, tj. absolutního využití aktérem, jenž ovládá stroj. V případě člověka se tedy jedná o zneužití či vykořisťování až na samu krajní mez snesitelnosti. (Mácha, J. (2009) Davidsonova kritika metaforického významu. In Filosofický časopis: Supplementum II. Studie k filosofii Donalda Davidsona. Praha, Filosofický ústav AV ČR, s. 141.) Slavík, Chrz, Štech et. al. 2013, s. 193 – 194 Generický prostor Komparativní spojnice Integrační prostor Vstup 2 Vstup 1 Aktér Mechanismus Činnost – ovládání Cíl – prospěch aktéra Role: ruční mlýn Role: stát Role: obyvatel státu Role: obilné zrno Cíl: semlít zrno na mouku Cíl: využít činnosti obyvatel Identita státu: role – ruční mlýn Identita obyvatele státu: role – obilné zrno Identita činnosti ovládání: semlít zrno (využít k pozření) Absolutní využití – zneužití, vykořisťování
11
Literatura CURRIE, G.; RAVENSCROFT, I. (2011). Recreative minds. Imagination in philosophy and psychology. New York, Oxford University Press. FAUCONNIER, G.; TURNER, M. (2002). The Way We Think. Conceptual Blending and the Mind's Hidden Complexities. New York, Basic Books. GRAY, E. M.; TALL, D. (1994) Duality, ambiguity, and flexibility: a proceptual view on simple arithmetic. Journal of Research on Mathematic Education, 1994, roč. 25, č. 2, s. 116–141. HEJNÝ, M. (2003) Diagnostika aritmetické struktury. In BURIAN, V.; HEJNÝ, M.; JÁNY, Š. Zborník príspevkov z letnej školy z teórie vyučovania matematiky PYTHAGORAS Bratislava : Exam, 2003, s. 22 – 42. JANÍK, T.; SLAVÍK, J. (2009) Obsah, subjekt a intersubjektivita v oborových didaktikách. Pedagogika, 2009, roč. 59, č. 2, s. 116–135. PIAGET, J. (1972) Play, Dreams and Imitaton in Childhood. London, Routledge et Kegan Paul. SLAVÍK, J.; JANÍK, T. (2012) Kvalita výuky: obsahově zaměřený přístup ke studiu procesů učení a vyučování. Pedagogika, 62, č. 3, s. 262 – 286. ISSN SLAVÍK, J.; CHRZ, V.; ŠTECH, S. et al. (2013) Tvorba jako způsob poznávání. Praha, Karolinum.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.