Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Slovní úlohy o společné práci − 3
2
Jak při řešení slovních úloh postupovat?
1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí zvolené neznámé a zadaných podmínek vyjádři všechny ostatní údaje z textu. 4. Vyjádři logickou rovnost plynoucí z textu úlohy a na jejím základě sestav rovnici a vyřeš ji. 5. Proveď zkoušku, kterou ověříš, že získané výsledky vyhovují všem podmínkám úlohy. 6. Napiš odpovědi na otázky zadané úlohy.
3
Tak si to pojďme ukázat na konkrétních příkladech.
Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: Pracovat mohou dvě, tři, ale i více těles, osob najednou. Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více jedinců, to, na čem společně „makají“, je vždy rovno 1). Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. Tak si to pojďme ukázat na konkrétních příkladech. Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem.
4
Tak si to pojďme ukázat na konkrétních příkladech.
A my se nyní zaměříme právě na to, jak vypočítat onu část, jinými slovy na to, za jak dlouho by společnou práci vykonalo každé těleso, každá osoba sama. Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: Pracovat mohou dvě, tři, ale i více těles, osob najednou. Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více jedinců, to, na čem společně „makají“, je vždy rovno 1). Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. Tak si to pojďme ukázat na konkrétních příkladech. Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem.
5
Slovní úloha o společné práci
Ukázka zadání takové úlohy: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším?
6
Slovní úloha o společné práci
Větším přítokem by se bazén naplnil za 20 hodin, což znamená, že za 1 hodinu by se naplnila 1/20 bazénu, za 2 hodiny pak 2/20 atd. Protože se bazén oběma přítoky společně naplní za 12 hodin, naplní se tedy za tu dobu společné práce 12/20 bazénu. Menším přítokem by se bazén naplnil za x hodin, což znamená, že za 1 hodinu by se naplnila 1/x bazénu, za 2 hodiny pak 2/x atd. Za 12 hodin společné práce se tedy naplní 12/x bazénu. Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším?
7
Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším? Tak ještě jednou a pomaleji.
8
Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším?
9
Typická rovnice slovních úloh o společné práci
Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším? Doba společné práce Jedna celá společná práce Doba práce prvního Doba práce druhého Typická rovnice slovních úloh o společné práci
10
Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem
Příklad: Dvěma přítoky otevřenými současně se bazén naplní za 12 hodin. Jen větším přítokem by se bazén naplnil za 20 hodin. Za jak dlouho by se bazén naplnil, pokud by se plnil jen přítokem menším? Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem Bazén se naplnil menším přítokem za 30 hodin.
11
Příklad: Dělník a učeň vykonají společně práci za 6 hodin. Dělník ji sám vykoná za 10 hodin. Za kolik hodin by ji vykonal učeň?
12
Příklad: Dělník a učeň vykonají společně práci za 6 hodin. Dělník ji sám vykoná za 10 hodin. Za kolik hodin by ji vykonal učeň? Dělník : Učeň : Učeň by práci vykonal sám za 15 hodin.
13
Příklad: Dělník A by sám provedl výkop za 7 hodin, dělník B sám za 6 hodin. Protože výkop má být hotov za 2 hodiny, byl přibrán dělník C. Za kolik hodin by výkop provedl sám dělník C?
14
Dělník C by výkop provedl sám za 5 hodin a 15 minut.
Příklad: Dělník A by sám provedl výkop za 7 hodin, dělník B sám za 6 hodin. Protože výkop má být hotov za 2 hodiny, byl přibrán dělník C. Za kolik hodin by výkop provedl sám dělník C? Dělník A : Dělník B : Dělník C : Dělník C by výkop provedl sám za 5 hodin a 15 minut.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.