Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Interpolace funkčních závislostí

Podobné prezentace


Prezentace na téma: "Interpolace funkčních závislostí"— Transkript prezentace:

1 Interpolace funkčních závislostí
V experimentu měníme hodnotu jedné nebo několika veličin xi a studujeme závislost veličiny y. - např. měníme , ostatní xi bereme jako parametry (a, b, g, ...): Chceme posoudit platnost závislosti y na xi z výsledků experimentu. → tj. chceme získat odhady parametrů např. pro N hodnot jsme naměřili N hodnot Předpokládáme, že známe funkční závislost f a že přesnost nastavení hodnot veličiny x je řádově větší, než přesnost měření závisle proměnné y (která má obecně pro každý bod jinou dispersi). ... teoretická závislost (fyzikální zákon)

2 Metoda nejmenších čtverců
Metoda početní interpolace. Používá se pro získání odhadů parametrů : 1) Zkonstruujeme veličinu 2) Hledáme minimum c2(a,b,g,...). x 1 2 3 4 5 6 7 y 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

3 Metoda nejmenších čtverců - lineární fit
lineární fit, y = mx minimalizace c2: disperze m: problém: co když neznáme x 5 10 15 20 y -10 30 40 50 60 m = 2.48  0.03

4 Metoda nejmenších čtverců - lineární fit
Pokud jsou neznámé, ale stejné, potom Pro neznámou disperzi pak lze spočítat odhad: ozn. - nevychýlený odhad: Odhad disperze m je tedy: ... minimální suma čtverců odchylek

5 Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese Interpolace a vyhlazování (spline) Regresní analýza a extrapolace Softwarové nástroje - Excel, Origin, Sigmaplot, ... - gnuplot, Octave, R, ... metoda největšího spádu Gaussova-Newtonova metoda algoritmus Levenberg–Marquardt simplex


Stáhnout ppt "Interpolace funkčních závislostí"

Podobné prezentace


Reklamy Google