Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Quantum Chemistry / Quantum Mechanics
Introduction
2
Nature of light Christiaan Huygens Dutch light consists of waves ~ 1684 – 1926 “golden age of (classical) physics Materials at this presentation: largely from
3
Nature of light Sir Isaac Newton 1643 1727 light consists of particles Christiaan Huygens Dutch light consists of waves ~ 1684 – 1926 “golden age of (classical) physics Materials at this presentation: largely from
4
Absorption or Emission
Atomic Spectroscopy Absorption or Emission Johannes Rydberg 1888 Swedish n1 → n2 name Converges to (nm) 1 → ∞ Lyman 91 2 → ∞ Balmer 365 3 → ∞ Pashen 821 4 → ∞ Brackett 1459 5 → ∞ Pfund 2280 6 → ∞ Humphreys 3283
5
Absorption or Emission
Atomic Spectroscopy Absorption or Emission -R/72 -R/62 -R/52 -R/42 Johannes Rydberg 1888 Swedish -R/32 IR -R/22 VISIBLE -R/12 UV Emission Quantum numbers n, levels are not equally spaced R = 13.6 eV
6
Photoelectric Effect (1887-1905)
discovered by Hertz in 1887 and explained in 1905 by Einstein. Vacuum Heinrich HERTZ ( )
7
Photoelectric Effect (1887-1905)
discovered by Hertz in 1887 and explained in 1905 by Einstein. Vacuum Albert EINSTEIN ( ) Heinrich HERTZ ( )
8
Kinetic energy
9
Compton effect 1923 playing billiards assuming l=h/p
Arthur Holly Compton American
10
Davisson and Germer 1925 Clinton Davisson Lester Germer In 1927
Diffraction is similarly observed using a mono-energetic electron beam Bragg law is verified assuming l=h/p
11
black-body radiation Gustav Kirchhoff (1860). black-body radiation]
Shift of n RED WHITE Small n Large n
12
If h is the Planck constant J.s
Then Louis de BROGLIE French ( ) Max Planck (1901) Göttingen
13
Young's Double Slit Experiment
Thomas Young 1773 – 1829 Young's Double Slit Experiment
14
de Broglie relation from relativity
Application to a photon (m0=0) To remember To remember
15
de Broglie relation from relativity
16
? Universal equation - particle-wave duality quantum character of microparticles Newton equations valid for heavy bodies
17
Time-dependent Schrödinger Equation
Without potential E = T With potential E = T + V Erwin Rudolf Josef Alexander Schrödinger Austrian 1887 –1961
18
Matrix Formulation Werner Karl Heisenberg ( 1901 Würzburg – 1976)
19
Relativity and Quantum Chemistry
Paul Adrien Maurice Dirac (1902 – 1984) relativity needed
20
Uveřejněné materiály jsou určeny studentům Vysoké školy chemicko-technologické v Praze jako studijní materiál. Některá textová i obrazová data v nich obsažená jsou převzataz veřejných zdrojů. V případě nedostatečných citací nebylo cílem autora/ů záměrně poškodit event. autora/y původního díla. S eventuálními výhradami se prosím obracejte na autora/y konkrétního výukového materiálu, aby bylo možné zjednat nápravu. The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.