Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilKristýna Kubíčková
1
Funkce
2
Funkce - definice Funkce je zobrazení, které každému číslu z podmnožiny množiny reálných čísel R přiřazuje právě jedno reálné číslo. Funkci značíme písmeny f, g, h, … a zapisujeme ve tvaru: nebo ve tvaru: y = f(x), např. y = 2x+1 f: y = 2x + 1 kde proměnná x je argument funkce.
3
Definiční obor f: y = 2x + 1 kde proměnná x je argument funkce, nebo-li nezávisle proměnná. Nezávislost je dána tím, že její hodnotu můžeme libovolně měnit, ovšem jen v rámci definované množiny, definičního oboru. Množina všech přípustných hodnot argumentu x, tedy všechny hodnoty, kterých může proměnná x pro danou funkci nabývat, se nazývá definiční obor. Značí se: D(f)
4
Obor hodnot Ke všem přípustným hodnotám argumentu x přísluší právě jedna funkční hodnota. Ty všechny dohromady tvoří obor hodnot (obor funkčních hodnot). Obor hodnot je množina všech reálných čísel, které dostaneme jako výstupní hodnotu funkce f, jestliže za x dosadíme všechny přípustné hodnoty z D(f). Značí se: H(f) Hodnota závisle proměnné je pro danou funkci jednoznačně určena hodnotou argumentu x (výpočtem) - proto „závisle“ proměnná. Funkční hodnota neboli závisle proměnná je číslo, které funkce přiřadí konkrétnímu argumentu x. Jinak řečeno: výstupní hodnota funkce. Obvykle ji značíme y nebo f(x).
5
zadání funkce 1) Předpisem (vzorcem, rovnicí) 2) Tabulkou 3) Grafem f: y = 2x + 1 x-2012 y-3135
6
Příklady [0; 1] [0; -1] [0,25; -1/2] [-1/4; -1,5] [3/2; -2] Je dána funkce f: y=2x-1 ; x R. Rozhodněte, která z následujících dvojic [x; y] patří funkci f. Ne Ano Ne
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.