Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilHynek Sedlák
1
Matematická statistika 1.přednáška
2
Statistická indukce Náš cíl: získat informace o základním souboru (o populaci) Provedeme výběrové šetření Z dat získáme informace Tyto informace zevšeobecníme na celý základní soubor Riziko omylu je tím větší, čím větší je variabilita dat a malá reprezentativnost výběrových dat Výběrová data pořízena náhodným výběrem
3
Náhodný výběr Každá jednotka základního souboru má stejnou pravděpodobnost, že bude vybrána Techniky výběru: Losování (předem pořízení úplného seznamu jednotek základního souboru)-pracné Výběr za pomoci náhodných čísel Systematický výběr – vybereme každou j-tou jednotku.(první je volena náhodně)
4
Druhy náhodného výběru Prostý náhodný výběr- vybíráme přímo statistické jednotky ze základního souboru, který není nijak tříděn Oblastní (stratifikovaný) výběr- základní soubor se předem rozdělí do několika skupin (oblastí) a v každé skupině se provede náhodný výběr. Oblasti uvnitř homogenní Vícestupňový výběr(v případě rozmístění jednotek základního souboru ne velkém území)
5
Statistiky Statistika je funkcí náhodných veličin, které tvoří náhodný výběr Výběrový úhrn Výběrový průměr Výběrový druhý centrální moment Výběrový rozptyl, výběrová směrodatná odchylka
6
Výběrová rozdělení NV pochází z A(π), pak NV pochází z Po(λ), pak NV pochází z N(µ,σ 2 ), pak Normované veličiny
7
Asymptotická výběrová rozdělení Z centrální limitní věty víme, že při dostatečně velkém počtu nezávislých pokusů konverguje binomické rozdělení normálnímu rozdělení Pochází-li výběr z A(π), pak náhodné veličiny mají asymptotické normované normální rozdělení, kde p je výběrový podíl
8
Teorie odhadu Bodový odhad Odhadujeme parametry rozdělení (π, µ) Bodový odhad-vhodně vybraná výběrová statistika (je tím lepší, čím blíže je skutečné hodnotě odhadovaného parametru) Chceme, aby s rostoucím rozsahem výběru rostla pravděpodobnost, že odhad je blízko skutečnosti (konzistence odhadu) Chceme, aby nedocházelo k systematickému podhodnocování nebo přeceňování odhadovaného parametru (nevychýlený odhad) Nejvhodnější ze všech odhadů je ta statistika, která má nejmenší rozptyl (vydatnost odhadu)
9
Bodové odhady NV z libovolného rozdělení se střední hodnotou µ a rozptylem σ 2,pak je nezkresleným odhadem µ je nezkresleným odhadem σ 2
10
Intervalové odhady-oboustranné intervaly Chceme najít interval, v němž leží odhadovaná hodnota parametru Φ s předem danou pravděpodobností 1-α Hledám A a B tak, aby a ……koeficient spolehlivosti Blízký 1, ale čím vyšší, tím širší interval 90%, 95%, 99% A,B jednoznačně určeno tak, aby
11
Intervaly spolehlivosti pro µ 1) při známém σ 2
12
Intervaly spolehlivosti pro µ bodový odhad µ ….přípustná chyba Délka intervalu 2x přípustná chyba Střed tohoto intervalu
13
Intervaly spolehlivosti pro µ 2) při neznámém σ 2........1-α/2% kvantil rozdělení t(Studentova) o n-1 stupních volnosti s……. výběrová směrodatná odchylka
14
Příklad 1 Jistá firma se zaměřila na měření množství jisté látky ve svých výrobcích. Výsledky ze vzorku výrobků jsou uvedeny v tabulce Pro posouzení dodržení norem na 95% hladině spolehlivosti odhadněte v jakých mezích bude střední obsah sledované látky ve výrobcích v celé produkci firmy, předpokládáme-li, že rozptyl veličiny „obsah sledované látky ve výrobku“ má v celé produkci hodnotu 0,8mg 2. Obsah látky v mg 2021222324 Počet výrobků 141082
15
Řešení příkladu 1 Máme tabulku rozdělení četností. můžeme konstatovat, že střední obsah sledované látky ve výrobku v celé produkci firmy bude s pravděpodobností 95% v intervalu (21,89;22,59)
16
Příklad 2 Jistá firma se zaměřila na měření množství jisté látky ve svých výrobcích. Výsledky ze vzorku výrobků jsou uvedeny v tabulce Pro posouzení dodržení norem na 95% hladině spolehlivosti odhadněte v jakých mezích bude střední obsah sledované látky ve výrobcích v celé produkci firmy. Obsah látky v mg 2021222324 Počet výrobků 141082
17
Řešení příkladu 2 Nemáme informaci o rozptylu základního souboru Výběrový rozptyl
18
Jednostranné intervaly Zajímá nás jen jedna mez Pravostranný interval spolehlivosti Levostranný interval spolehlivosti Hranice jednostranných intervalů nejsou totožné s hranicemi oboustranného intervalu spolehlivosti
19
Jednostranné intervaly pro µ Pravostranný interval při známém σ 2 Levostranný interval při známém σ 2 Pravostranný interval při neznámém σ 2 Levostranný interval při známém σ 2
20
Příklad 3 Jistá firma se zaměřila na měření množství jisté látky ve svých výrobcích. Výsledky ze vzorku výrobků jsou uvedeny v tabulce Pro posouzení dodržení norem Odhadněte, jaké množství středního obsahu sledované látky ve výrobku v celé produkci firmy nebude překročeno s 95% pravděpodobností. Obsah látky v mg 2021222324 Počet výrobků 141082
21
řešení Chci spočítat pravostranný interval Rozptyl základního souboru neznám S pravděpodobností 95 % střední hodnota obsahu sledované látky ve výrobku v celé produkci firmy nepřekročí hodnotu 22,57mg.
22
Oboustranný Interval pro π Intervalové odhady na základě velkých výběrů z A(π) Druhý centrovaný moment veličin mající A(π) p(výběrový podíl) bodový odhad π
23
Jednostranné intervaly pro π Pravostranný interval Levostranný interval
24
Příklad 4 Jistá firma se zaměřila na měření množství jisté látky ve svých výrobcích. Výsledky ze vzorku výrobků jsou uvedeny v tabulce Pro posouzení dodržení norem Odhadněte, v jakých mezích se bude s pravděpodobností 95% pohybovat podíl(procento) výrobků, které mají obsah sledované látky do 22mg(včetně) v celé produkci firmy Obsah látky v mg 2021222324 Počet výrobků 141082
25
řešení Hledáme oboustranný interval pro π Výběrový podíl Podíl výrobků s obsahem sledované látky do 22mg včetně se s pravděpodobností 95% bude pohybovat mezi 38% a 82%
26
Příklad 5 Firma při výrobě určitého druhu výrobků dosahovala 5% zmetkovosti. Po změně dodavatele jedné suroviny potřebné k výrobě tohoto druhu výrobků se firma chce přesvědčit, zda nedošlo ke změně kvality těchto výrobků a proto provedla šetření u výstupní kontroly. Ta odhalila, že mezi 250 kontrolovanými výrobky bylo 16 zmetků. Rozhodněte s pravděpodobností 95%, zda došlo ke změně kvality výrobků.
27
řešení Na základě výběrového šetření můžeme zjistit v jakých mezích se s pravděpodobností 95% pohybuje procento zmetků. A pokud v tomto intervalu spolehlivosti bude ležet i 5% zmetkovost, která byla před změnou dodavatele, nedošlo ke změně kvality výrobků. V opačném případě došlo.
28
řešení Výběrový podíl S 95% pravděpodobností se procento zmetků ve výrobě pohybuje mezi 3,2 % a 9,6 %. Protože tento interval obsahuje 5%, nedošlo ke změně kvality výrobků
29
Teorie hypotéz Statistická hypotéza- tvrzení (domněnka) 1) o charakteristice (parametru) základního souboru -parametrické testy 2) o typu rozdělení- neparametrické testy Testovaná hypotéza – nulová hypotéza H 0 Alternativní hypotéza H 1 – popírá nulovou hypotézu Test statistické hypotézy-postup, kterým na základě výběrových dat ověřujeme platnost dané stat. hypotézy Testujeme, zda H 0 zamítáme, či ji nelze zamítnout
30
Parametrické testy Nulová hypotéza Alternativní hypotéza oboustranná alternativa Pravostranná alternativa Levostranná alternativa K testu použijeme statistiku (testové kritérium), které má při platnosti H 0 známé rozdělení pravděpodobnosti
31
Obor přijetí, kritický obor Prostor statistiky rozdělíme na dva disjunktní obory V……obor přijetí W…….kritický obor- tvoří ho takové hodnoty testového kritéria, které jsou při platnosti H 0 extrémní(málo pravděpodobné) extrémně nízké a extrémně vysoké hodnoty extrémně vysoké hodnoty extrémně nízké hodnoty H 0 zamítáme, když testové kritérium padne do W H 0 nelze zamítnout, když testové kritérium padne do V
32
Důsledky rozhodnutí rozhodnutí dle dat skutečnost H0H0 H1H1 H0H0 Správné rozhodnutí Chyba 1. druhu H1H1 Chyba 2. druhu Správné rozhodnutí
33
Hladina významnosti, síla testu P(H 1 /H 0 )=α hladina významnosti P(t leží v W/platí H 0 ) Tuto chybu předem volíme P(H 0 /H 1 )=β 1- β síla testu –s jakou pravděpodobností zamítáme H 0, když H 1 platí Obě chyby spolu souvisí Α určíme předem a vybereme testové kritérium, pro které je síla testu maximální
34
Postup při testování 1) formulace hypotéz 2) Volba hladiny významnosti 3) Výběr a výpočet testového kritéria z výběrových dat 4) určení oboru přijetí a kritického oboru 5) rozhodnutí t patří W zamítáme H 0 t nepatří W nelze zamítnout H 0
35
P-hodnota P-hodnota: nejnižší hladina významnosti, na které zamítáme H 0 Pokud p-hodnota je obsah plochy pod funkcí hustoty pravděpodobnosti testové statistiky napravo od hodnoty testové statistiky p-hodnota =1-F(.)
36
P-hodnota Pokud p-hodnota je obsah plochy pod funkcí hustoty pravděpodobnosti nalevo od hodnoty testové statistiky P-hodnota =F(.) Pokud p-hodnota je obsah plochy pod funkcí hustoty pravděpodobnosti nalevo od hodnoty testové statistiky P-hodnota =2min(F(.), 1-F(.)) α>p …….H 0 zamítáme α<p …….H 0 nelze zamítnout
37
Hypotézy o parametru binomického rozdělení
38
Příklad 5 Firma při výrobě určitého druhu výrobků dosahovala 5% zmetkovosti. Po změně dodavatele jedné suroviny potřebné k výrobě tohoto druhu výrobků se firma chce přesvědčit, zda nedošlo ke změně kvality těchto výrobků a proto provedla šetření u výstupní kontroly. Ta odhalila, že mezi 250 kontrolovanými výrobky bylo 16 zmetků. Rozhodněte s pravděpodobností 95%, zda došlo ke změně kvality výrobků.
39
Řešení α= 0,05 Na 5% hladině významnosti test neprokázal, že by došlo ke změně kvality výrobků
40
Test hypotézy o střední hodnotě 1) σ 2 známe
41
Test hypotézy o střední hodnotě 1) σ 2 neznáme
42
Příklad 6 Výrobce jistého typu myček nádobí tvrdí, že průměrná spotřeba vody provozu těchto myček na jedno mytí je 20 litrů vody. Na 5% hladině významnosti ověřte, zda tento údaj výrobce není podhodnocený. Předpokládejme, že náhodná veličina „spotřeba vody na jeden mycí program“ má normální rozdělení a u dvaceti myček tohoto typu byly zjištěny následující údaje o spotřebě vody Spotřeba vody na jedno mytí(l) 19,520,521,522 Počet myček25103
43
řešení Rozptyl základního souboru neznáme Test na 5% hladině významnosti prokázal, že spotřeba vody u tohoto typu myček je vyšší než udává výrobce
44
Párový test Předpokládáme dva závislé výběry náhodných veličin X,Y Vytvoříme novou veličinu
45
příklad7 Pro posouzení účinnosti školení na výkon dělníků bylo náhodně vybráno 8 dělníků a jejich pracovní výkony(měřeny počtem vyrobených výrobků za měsíc) jsou uvedeny v tabulce dělníkVýkon před školením Výkon po školení Rozdíl d K.L.85905 M.H.748511 S.S.88924 J.B.658520 L.N.84884 B.G.7572-3 D.V.77847 O.P.668216
46
Prokázal náhodný výběr, že školení zlepšilo výkon dělníků?(α=0,05) Řešení Test prokázal statisticky významný rozdíl ve výkonech dělníků před a po školení
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.