METABOLISMUS.

Slides:



Advertisements
Podobné prezentace
Fyziologie- dýchací systém v zátěži
Advertisements

AEROBNÍ A ANAEROBNÍ TRÉNINK
ÚNAVA A ZOTAVENÍ.
Reakce a adaptace oběhového systému na zatížení
Otázky z fyziologie – přednášky
METABOLISMUS KOSTERNÍCH SVALŮ BĚHEM TĚLESNÉ PRÁCE
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Látková výměna (metabolismus)
VYTRVALOST Michl Lehnert.
METABOLICKÁ ADAPTACE NA TRÉNINK
Fyziologie tělesné zátěže-oběhový systém
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
C licence FAČR Biomedicínské aspekty pohybových aktivit.
Školení trenérů III. třídy Brno 2007 Česká unie Dento Karate-do Teorie sportovního tréninku Milan Haška.
Fyziologie zátěže úvodní hodina
ABY ŠPORT NEBOLEL Bratislava,  Výživa bude efektivní pouze ve spojení s kvalitní tréninkovou přípravou sportovce  Výživa je závislá na typu.
RESPIRAČNÍ REGULACE BĚHEM ZÁTĚŽE
Zásady výživy sportovce
Dýchací systém a zátěž.
Trénink podle prahových hodnot
Fyziologie zátěže úvodní hodina
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Anaerobní testy ? (pouze ilustrace pro přednášky) Jan Novotný, Martina Novotná FSpS MU, Brno.
Glykolýza Glukoneogeneze
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
Fyzioterapie 2012/2013 FSpS MU Brno
Reakce a adaptace oběhového systému na zátěž
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Sportovní trénink jako proces bio-psychosociální adaptace
INTERMEDIÁRNÍ METABOLISMUS
SACHARIDOVÝ METABOLISMUS KOSTERNÍCH SVALŮ BĚHEM TĚLESNÉ PRÁCE
Poznámky k metabolismu
Energetické krytí. Energetické krytí 1) Systém ATP - CP Rychlostní zatížení s dobou trvání výkonu přibližně 15 s využívá jako hlavní energetický.
Fyziologie dýchacího systému
Motorické schopnosti (Physical Abilities, Motorische Eigenschaften)
Rychlostní disciplíny MUDr.Kateřina Kapounková
Regenerace ve sportu – biologické veličiny zatížení MUDr
VYTRVALOST Mgr. Michal Botek, Ph.D. Centrum kinatropologického výzkumu.
ROZVOJ VYTRVALOSTI David Zahradník, PhD.
Látková výměna Školení trenérů licence A
Dýchací systém.
Fyziologie dýchacího systému
Výpočet denního energetického výdeje
FYZIOLOGIE ZÁTĚŽE.
METABOLICKÁ CHARAKTERISTIKA VÝKONU METABOLICKÉ KRYTÍ PODÍL AEROBNÍHO a ANAEROBNÍHO KRYTÍ.
Fyziologie sportovních disciplín
SPECIFICKÉ ADAPTACE NA ZÁT Ě Ž ADAPTACE ENERGETICKÝCH ZÁSOB FUNKČNÍ ADAPTACE (aerobní, anaerobní kapacita) FUNKČNÍ ADAPTACE (smysly) MORFOLOGICKÉ ZMĚNY.
Název a kód: FYZIOLOGIE ASEBS Rozsah: Konzultační hodiny: Ukončení: ???? Mgr. Bernaciková – pouze po domluv ě mailem 8x p ř ednáška + 8x seminá ř za semestr.
Výživa běžců.
PhDr. Michal Botek, Ph.D. Fakulta tělesné kultury, UP Olomouc METABOLISMUS Sacharidů a Lipidů Prezentace obsahuje materiály vypracované doc. MUDr. Pavlem.
Pohybový aparát  Pasivní část Kostra – opora těla, tvar - upínají se na ni svaly - tvoří ji kostra osová (lebka, páteř, hrudník) a kostra končetin - spojení.
Metodická komise OSÚ-ZL Cvičitel lyžování © 2010.
MUDr. Zdeněk Pospíšil MUDr. Kateřina Kapounková. Detrénink je částečná nebo úplná ztráta fyziologických a morfologických mechanizmů,které vlastní trénink.
TRANSPORTNÍ SYSTÉM. FUNKCE TRANSPORTNÍHO SYSTÉMU.
CORIHO CYKLUS Aneta KOPECKÁ Monika PUNČOCHÁŘOVÁ Ivana REDROVÁ Josef ŘÍHA Sandra VAŇKOVÁ.
Vytrvalostní schopnosti (endurance abilities, Ausdauerfähigkeit)
Fyziologie dětí Mgr. Lukáš Cipryan.
Fyziologické aspekty PA dětí
Fyziologie zátěže úvodní hodina
Zátěžové testy aerobních schopností Stanovení ANP W170 VO2max
Fyziologie ASEBS Martina Bernaciková.
Metabolismus a energetické krytí při sportu
Bazální metabolismus Výpočet denního energetického výdeje
Bazální metabolismus Výpočet denního energetického výdeje
Anaerobní práh.
Dýchání při tělesné zátěži
Křivky dodávky kyslíku
Fyziologie sportovních disciplín
Transkript prezentace:

METABOLISMUS

Pohybová zátěž vyvolává změny v organismu: A) Akutní - reakce (odpověď) na jednorázovou zátěž – např. ↑ SF B) Chronické - adaptace při opakování zátěži - např. ↓ SF klidové a ↓ SF při stejné zátěži Svalová činnost je spojena se zvýšením energetických nároků. - pokles ATP, zvýšení ADP (↓ATP:ADP) Resyntéza ATP: - Anaerobně (ADP+ADP, ADP+CP) – rychlá, malý výnos Aerobně (O2) – pomalejší, energeticky výnosnější

Zdroje energie pro pohybovou činnost glycidy, lipidy, proteiny Štěpí, eventuelně transformují v produkty intermediárního metabolismu, získáváme z nich ATP Při málo intenzivní práci čerpána energie ze všech zdrojů Při intenzivní svalové činnosti jsou hlavním zdrojem cukry

zásoby ATP na několik vteřin (21-33kJ) ATP se neustále obnovuje z CP a z štěpení živin – glycidy, tuky, bílkoviny Zásoby: - cukry (glykogen 350g – 550g) - tuky (5 – 20g) - bílkoviny (jako zdroje výjmečně)

Pásma energetické krytí Anaerobní alaktátové Anaerobní laktátové Aerobní alaktátové

Alaktátový neoxidativní způsob 2 ADP ATP + AMP ATP ADP + P + energie pro sval. stah CP + ADP C + ATP

Laktátový neoxidativní způsob G + 2P + 2ADP 2 mol. kys.mléčné + 2ATP G….glykogen metabolická acidóza hladina LA v krvi

Oxidativní způsob nedochází k tvorbě laktátu G + 38P + 38ADP + 6O2 6CO2 + 44H2O + 38ATP MK + 130P + 130ADP + 23O2 16CO2 + 146H2O + 130ATP

- s trváním pokles (?Havlíčková et al, 1991)

Podíl energetického krytí v závislosti na trvání zátěže [%] (Placheta et al., 2001)

Zdroje energetického krytí při zvyšující se intenzitě Respirační kvocient = poměr mezi vydýchaným oxidem uhličitým a spotřebovaným kyslíkem RQ sacharidů = 1 RQ = CO2 O2 1 g = 4,1 kcal RQ tuku = 0,7 1 g = 9,3 kcal (Hamar & Lipková, 2001)

Schéma transportu O2 a CO2 (Wasserman, 1999)

Čím více O2 dopraveno k pracujícím svalům, tím větší aerobní produkce energie (větší rychlost běhu, pozdější přechod na anaerobní krytí, déle trvající zátěž)

AP (aerobní práh) - maximální intenzita při které přestává „výhradní“ aerobní krytí intenzita od které se začíná zapojovat anaerobní krytí a tak vzniká laktát hladina laktátu (2 mmol/l krve)

VO2max [ml/kg/min] plató 45 AnP 70-90 % VO2max AP 50-60 % VO2max 3,5 Intenzita zatížení (rychlost běhu,…)

AnP (anaerobní práh) - maximální intenzita při které začíná převládat anaerobní krytí - intenzita při které dochází k narušení dynamické rovnováhy mezi tvorbou a metabolizací laktátu hladina laktátu (4 mmol/l krve) a začíná se zvyšovat. Kolem 8 mmol/l krve nemožnost pokračovat (trénovaní až 30 mmol).

laktát energetický zdroj sval. vlákna VO2max [ml/kg/min] L již nestačí být metabolizován – zvyšuje se ↑pH 45 tuky < cukry AnP 70-90 % VO2max 4 mmol/l I., II. a, II. b L je metabolizován (srdce,nepracující svaly) 2 mmol/l tuky = cukry I., II. a AP 60 % VO2max I. 3,5 ? 1,1 mmol/l tuky > cukry Intenzita zatížení

Zakyselení organismu a nemožnost pokračovat dále v zátěži (Hamar & Lipková, 2001)

Intenzita při dlouhodobé aktivitě (30 minut a víc) nesmí být nad úrovní AnP. Před započetím (předstartovní stav) - zvýšení spotřeby O2 (emoce, podmíněné reflexy) 2) Iniciální fáze zátěže (do 5 minut) - zvyšování spotřeby kyslíku na úroveň odpovídající intenzitě zatížení - mrtvý bod, druhý dech Setrvalý (rovnovážný)stav - požadavky pracujících svalů na dodávku O2 jsou plněny, jsou odváděny metabolity - spotřeba O2 se nemění - SF pohyb v rozsahu ±4 tepy (pravý setrvalý stav)

Přeměna energie-energetický výdej BM = bazální metabolismu KM = klidový metabolismus (110 - 120% BM) PM = pracovní metabolismus (130 – 30 000%BM)

Kyslíkový dluh nedostatečné zásobení pracujících svalů kyslíkem (pomalejší ↑ SF a DF). nepoměr mezi požadavky na O2 a jeho dodávkou vede k zapojení anaerobních mechanismů - vznik LAKTÁTU ( ↑ H+ metabolické acidóza – mrtvý bod). při zajištění dodávky O2 – druhý dech po ukončení zátěže přetrvává zvýšený příjem O2 = splácení kyslíkového dluhu

splácení kyslíkového dluhu obnova ATP a CP odstraňování laktátu (oxidace na pyruvát – ve svalech, srdci; resyntéza na glykogen – játra) - urychlení vyplavení laktátu ze svalů a a lepší prokrvení orgánu metabolizujících laktát mírnou intenzitou zatížení (50 % VO2max) obnova myoglobinu a hemoglobinu velká část do několika minut (do 30 minut), mírný přetrvává až 12-24 hodin