Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -

Slides:



Advertisements
Podobné prezentace
Chyby měření Bc. David FURKA
Advertisements

Měříme elektrický proud
3. PRINCIP MAXIMÁLNÍ VĚROHODNOSTI
1. Chyby měření Systematika chyb:
64. Odhady úplných chyb a vah funkcí BrnoLenka Bocková.
Název a adresa školy: Střední odborné učiliště stavební, Opava, příspěvková organizace, Boženy Němcové 22/2309, Opava Název operačního programu:
CHYBY MĚŘENÍ.
Název a adresa školy: Střední odborné učiliště stavební, Opava, příspěvková organizace, Boženy Němcové 22/2309, Opava Název operačního programu:
Postup měření délky Autor: Mgr. Eliška Vokáčová
Měření elektrického odporu
KONTROLA MĚŘICÍCH PŘÍSTROJŮ
Fyzika 6.ročník ZŠ Fyzikální veličina D é l k a Creation IP&RK.
Elektronické měřicí přístroje
Měření fyzikální veličiny
IDENTIFIKÁTOR MATERIÁLU: EU
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Chyby jednoho měření když známe
Bezpečnost v elektrotechnice
Elektrotechnická měření Základní měření a analogové přístroje
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/
Metrologie   Přednáška č. 5 Nejistoty měření.
Spotřeba a přetížitelnost měřicích přístrojů
Měřicí přístroje a metody
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
 Zkoumáním fyzikálních objektů (např. polí, těles) zjišťujeme že:  zkoumané objekty mají dané vlastnosti,  nacházejí se v určitých stavech,  na nich.
Měříme délku s různou přesností
Úvod do praktické‚ fyziky
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Hodnoty tP pro různé pravděpodobnosti P
Chyby měření číslicového měřicího přístroje
Maximální chyba nepřímá měření hrubý, řádový odhad nejistoty měření
Anotace Prezentace, která se zabývá měřením střídavého proudu Autor Mgr. Michal Gruber Jazyk Čeština Očekávaný výstup Žáci umí změřit střídavé veličiny.
Porovnání noniusových a digitálních měrek v oblasti metrologie
Úvod do praktické fyziky Seminář pro I.ročník F J. Englich, ZS 2003/04.
Přehled měřidel.
Přenos nejistoty Náhodná veličina y, která je funkcí náhodných proměnných xi: xi se řídí rozděleními pi(xi) → můžeme najít jejich střední hodnoty mi a.
ELEKTRICKÁ MĚŘENÍ Ing. Petr Hanáček ELEKTRONICKÉ MĚŘÍCÍ PŘÍSTROJE.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Měření odporů výchylkovými Měření odporů výchylkovýmimetodami.
Výpočet elektrických veličin
Experimentální metody v oboru – Přesnost měření 1/38 Naměřená veličina a její spolehlivost © Zdeněk Folta - verze
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/
Měření odporů Kelvinovou metodou velmi malé odpory
Měření s multimetrem Název školy: Základní škola Brána Nová Paka
Chyby měření / nejistoty měření
Chyby a neurčitosti měření
Elektrické měřící přístroje
Elektrické měřící přístroje
ELEKTRICKÉ MĚŘENÍ ZVĚTŠOVÁNÍ ROZSAHU VOLTMETRŮ.
ELEKTRICKÉ MĚŘENÍ VLASTNOSTI MĚŘICÍCH PŘÍSTROJŮ.
Elektrické měřící přístroje
ZVĚTŠOVÁNÍ ROZSAHU AMPÉRMERTRŮ
Úvod do praktické fyziky
ELEKTRICKÉ MĚŘENÍ MĚŘICÍ METODY.
CHYBY PŘI SOUČASNÉM MĚŘENÍ NAPĚTÍ A PROUDU
Měření odporů Ohmovou metodou větší střední odpory
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Měření elektrického proudu a napětí Číslo DUM: III/2/FY/2/2/8 Vzdělávací předmět: Fyzika Tematická oblast:
Výpisky z fyziky − 6. ročník
Tato prezentace byla vytvořena
Měřicí systém Metex MS 91 XX metrologické ověření generátoru funkcí POZOR zapojení pouze po odsouhlasení vyučujícím.
MĚŘENÍ I. POSUVNÉ MĚŘÍTKO
zpracovaný v rámci projektu
ELEKTRICKÉ MĚŘENÍ CHYBY PŘI MĚŘENÍ.
Název: Chyby měření Autor: Petr Hart, DiS.
Měření elektrického proudu
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Metody a chyby měření Zpracoval: Vladimír Michna
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Princip max. věrohodnosti - odhad parametrů
F-Pn-P062-Odchylky_mereni
Transkript prezentace:

Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) - mají původ v náhodných jevech ostatní (typ B) - metoda měření, použité měřící přístroje

Nejistota metody a měřidel - obvykle systematická chyba - je-li to možné, nejistotu posoudit a kvantifikovat → korekce - stanovení odhadem Příklad: měření odporu přímou metodou korekce na vnitřní odpor přístrojů (voltmetr)

Třída přesnosti měřících přístrojů statistické šetření (výrobcem) na sérii vyrobených měřících přístrojů X0 = nominální hodnota získaná měřením přístrojem s podstatně vyšší přesností Di = odchylka i-tého přístroje: třída přesnosti: řada P = 0.1, 0.2, 0.5, 1, 1.5, 2.5 chyba naměřené veličiny: rovnoměrné rozdělení v intervalu (-a, a): V intervalu (-uB, uB) kolem odhadnuté hodnoty měřené veličiny se skutečná (správná) hodnota měřené veličiny nachází s pravděpodobností R = rozsah stupnice

Třída přesnosti měřících přístrojů přístroje dělíme podle třídy přesnosti: příklad: - rozsah ampérmetru: R = 3 A - třída přesnosti: P = 1.5 Absolutní nejistota (chyba) měření proudu na tomto rozsahu je: Pozn.: je tedy vhodné měřit v horní části stupnice ručkového měřícího přístroje. R = rozsah stupnice P Kategorie 0.1 etalony, normály 0.2 cejchovní 0.5 laboratorní 1 1.5 provozní 2.5

Třída přesnosti - zobecnění Pojem třídy přesnosti můžeme zobecnit i na další měřicí přístroje Absolutní chybu měřidla lze odhadnout z dělení stupnice: předpokládáme rovnoměrné dělení stupnice v intervalu (-a, a) volíme a = D = nejjemnější dílek stupnice Příklad: Při měření posuvným měřidlem je D = 0.1 mm. Chybu měření pak odhadneme jako: →

Třída přesnosti - zobecnění princip nonia 0 1 2 3 4 5 6 7 8 9 10 ……….. 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 ……….. 0 1 2 3 4 5 6 7 8 9 10 

Značení elektrických měřících přístrojů Brož J., a kol.: Základy fyzikálních měření I, SPN Praha 1967, tab. 1.1 a tab. 1.2 str. 208 třída přesnosti 2.5

Digitální měřící přístroje Maximální chyba se vyjadřuje většinou v procentech naměřené hodnoty + násobek řádu poslední platné číslice zobrazené na displeji Specifikace : Základní funkce Rozsah Přesnost Měření DC napětí 600mV / 6V / 60V / 600V /1000V +/- (0,3% + 2) Měření AC napětí +/- (0,6% + 5) Měření DC proudu 600μA / 6000μA / 60mA / 600mA / 10A +/- (0,5% + 3) Měření AC proudu +/- (1% + 5) Měření odporu 600Ω / 6kΩ / 60kΩ / 600kΩ / 6MΩ / 60MΩ +/- (0,5% + 2) Měření kapacity 6nF / 60nF / 600nF / 6mF / 60mF / 600mF / 6mF +/- (2% + 5) Měření teploty ve °C - 40°C až do + 1000°C +/- (1% + 3) Měření teploty ve °F - 40°F až do + 1832°F +/- (1,5% + 5) Měření kmitočtu 60Hz / 60kHz / 600kHz / 6MHz / 60MHz +/- (0,1% + 3)

Digitální měřící přístroje Příklad: Metex M-3850D Měříme odpor. Naměříme R = 51,37 W na rozsahu 400 W. Přístroj má 4-místný displej. Podle údajů výrobce je chyba: 0.5% naměřené hodnoty plus 2x0,010 W, tj. D = 0,005 × 51,37 + 2 × 0,01 W = 0,27685 W Výsledek měření je tedy R = (51,37 ± 0,16) W.