Distribuce klíčů. Metoda Diffie Hellman Použiji jednosměrnou funkci f(x)=p x mod q p,q jsou velká prvočísla. Uživatel A zvolí tajný klíč t, uživatel B.

Slides:



Advertisements
Podobné prezentace
(B1 Print and Delivery) B1 Tisk a odeslání Ing. Miroslav Beran Servis/Helpdesk.
Advertisements

Jaroslav Pinkava - prosinec 2000 Bankovní institut vysoká škola a.s. 1 ELEKTRONICKÝ PODPIS – využití v bankovnictví (jednodenní seminář, Bankovní institut.
NÁTEPNÍ MĚŘÍCÍ SYSTÉM T. Ibr, J. Vnouček, H. Freml.
IKT PHP PHP Tvorba formuláře - 10 Mgr. Josef Nožička
Základy databázových systémů
Seznámení s asymetrickou kryptografií, díl 1.
Úvod do klasických a moderních metod šifrování Jaro 2008, 7. přednáška.
Asymetrická kryptografie
BINOMICKÉ ROZDĚLENÍ (Bernoulliovo schéma)
Kalmanuv filtr pro zpracování signálů a navigaci
Optické metody Metody využívající lom světla (refraktometrie)
J a v a Začínáme programovat Lucie Žoltá Mat.metody příklady.
Informatika pro ekonomy II přednáška 1
Kvantové počítače Foton se může nacházet „současně na více místech“ (s různou pravděpodobností). Nemá deterministicky určenou polohu. To dává šanci elementární.
Šifrování a bezpečnost
Šifrovaná elektronická pošta Petr Hruška
Kryptografie Kvantová mechanika A jak to spolu souvisí?
Šifrování Jan Fejtek – Gymnázium, Dukelská 1, Bruntál
Databázové systémy. Práce s daty Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace.
Šifrování a bezpečnost
Protokoly ověřování Projektování distribuovaných systémů Ing. Jiří Ledvina, CSc.
EDI RNDr. Pavel Milička Skalský Dvůr
Násobení mnohočlenů.
Seznámení s kvantovou kryptologií
BARYONY p, n, Λ, Σ, Ξ, Ω nukleony hyperony nukleony Obecně pro baryon i 1baryony.
Zdroje fotonů pro nanofotoniku. Revoluce v telekomunikacích 1. Elektromagnetismus (1820…)  telegraf (1844), telefon (1876) 2. Vakuová elektronika ( )
1/ Na liště Prezentace Zvolím nastavit prezentaci. 2/ Zvolím Typ prezentace 3/ Napíši, které chci zobrazit snímky 4/ Zvolím předvádění s animací nebo.
Multithread programming Java vs. OpenMP Pavel Zavoral Martin Kugler.
Úvod do klasických a moderních metod šifrování Jaro 2008, 9. přednáška.
Hillova šifra Lester S. Hill (1929) Polygrafická šifra Φ: Amx K  Bm
Teorie čísel a šifrování Jan Hlava, Gymnázium Jiřího Ortena Kutná Hora Petr Šebek, Gymnázium Uherské Hradiště.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Tato prezentace byla vytvořena
le chiffre indéchiffrable
Šifrovací algoritmy EI4. DES – Data Encryption Standard  Soukromý klíč  56 bitů  Cca 7,2 x klíčů  Rozluštěn v roce 1997.
Úvod do klasických a moderních metod šifrování Jaro 2009, 5. přednáška.
Úvod do klasických a moderních metod šifrování
RSA šifra Ronald Rivest, Adi Shamir a Leonard Adlemann.
Teorie čísel Prvočíslo Eulerova funkce φ(n)
Pokročilé architektury počítačů (PAP_16.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Protokoly vzdálených terminálů
RSA – poznámky k algoritmu
Teorie čísel Prvočíslo Eulerova funkce φ(n)
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění.
Feistlovy kryptosystémy Posuvné registry Lucifer DES, AES Horst Feistel Německo, USA IBM.
Hybridní kryptosystémy
Hillova šifra Lester S. Hill (1929) Polygrafická šifra Φ: Amx K  Bm
McEllisova šifra.
McEllisova šifra. James Ellis( ) Clifford Cocks, Malcolm Williamson Alice Bob zpráva šum Odstranění šumu.
Automatické šifrování Enigma. Scrambler Φ(x) monoalfabetická šifra Ψ(x,m) = Φ(x+m mod N)
Bezpečnost systémů 2. RSA šifra *1977 Ronald Rivest *1947 Adi Shamir *1952 Leonard Adelman *1945 University of Southern California, Los Angeles Protokol.
Kontakty slajdy: ftp://ulita.ms.mff.cuni.cz/predn/POS.
Symetrická šifra Šifrovací zobrazení y = φ(x,k) Dešifrovací zobrazení x = ψ(y,k)
Automatické šifrování
Zkouška. XXX YYY.
Praktické ukázky Zlín Fakulta informatiky, Masarykova univerzita, Brno Laboratoř Bezpečnosti a aplikované kryptografie.
Informační bezpečnost VY_32_INOVACE _BEZP_16. SYMETRICKÉ ŠIFRY  Používající stejný šifrovací klíč jak pro zašifrování, tak pro dešifrování.  Výhoda.
Kerberos ● Bezpečnost zaručená třetí stranou ● Autentikátory, KDC ● Lístky relace ● Lístky na vydávání lístků ● Autentizace mezi doménami ● Dílčí protokoly.
Složitost algoritmu Vybrané problémy: Při analýze složitosti jednotlivých algoritmů často narazíme na problém, jakým způsobem vzít v úvahu velikost vstupu.
Дац.В.А.Міхедзька Геапалітычнае становішча Беларусі ў я гг. XX ст. Заходняя Беларусь у складзе польскай дзяржавы 1.Рыжская мірная дамова 1921 г.
Jednovýběrový a párový t - test
Operační program Vzdělávání pro konkurenceschopnost
Tato prezentace byla vytvořena
Informatika pro ekonomy přednáška 3
Feistlovy kryptosystémy
Úvod do klasických a moderních metod šifrování
Informatika pro ekonomy přednáška 3
Bezpečnost informačních systémů
Úvod do klasických a moderních metod šifrování
Kvantová kryptografie
Transkript prezentace:

Distribuce klíčů

Metoda Diffie Hellman Použiji jednosměrnou funkci f(x)=p x mod q p,q jsou velká prvočísla. Uživatel A zvolí tajný klíč t, uživatel B tajný klíč s. Uživatel A spočítá f(t) = p t mod q = α a pošle Uživatel B spočítá f(s) = p s mod q = β a pošle

Metoda Diffie Hellman A spočítá β t mod q = p st mod q = K. B spočítá α s mod q = p ts mod q = K. K se použije jako klíč pro jednorázovou šifru (např. DES)

Kvantová kryptografie Posílám fotony s různou polarizací Polarizaci lze měřit pomocí filtrů, při měření se polarizace změní. Použiji 4 různé polarizace - \ | / Dvě schémata měření x +

Výměna klíčů Kóduji 0 jako \ nebo – Kóduji 1 jako / nebo | Posloupnost 0 a 1 náhodně kóduji pomocí schémat + a x Příjemce náhodně použije schémata + a x pro rozpoznání Dodatečně se domluvíme, kdy byla použita stejná schémata. Ty části posloupnosti budou použity jako jednorázový klíč.

Příklad Posloupnost Volím schémata X+XX+++XX+XX Odesílám\|/\-||\\-/\ Příjemce volí++X++XXX++XX Příjemce čte Smluvený klíč

Pokud nepřítel naslouchá Posloupnost Volím schémata X+XX+++XX+XX Odesílám\|/\-||\\-/\ Nepřítel volí++X++XXX++XX Nepřítel čte Nepřítel odešle-|/|-\/\|-/\ Příjemce volí+++XXX+++XXX Příjemce čte Domluva s od.11010