PŘENOSOVÉ CESTY (c) 1999. Tralvex Yeap. All Rights Reserved.

Slides:



Advertisements
Podobné prezentace
PLAYBOY Kalendar 2007.
Advertisements

Počítačové sítě Přenosová média
Název materiálu: OPAKOVÁNÍ 2. POLOLETÍ - OTÁZKY
- podstata, veličiny, jednotky
1 TECHNOLOGICKÉ POZADÍ LASEROVÝCH SPOJŮ …aneb Od bezdrátu ke drátu (a zpět) vol. 4 Roman K. Onderka Kam kráčí bezdrátové sítě Morava a Slovensko Přerov,
Tato prezentace byla vytvořena
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:Fyzická vrstva RM-OSI II. Ročník:4. Datum.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:Fyzická vrstva RM-OSI IV. Ročník:4. Datum.
PC SÍTĚ I.
Rušení radiokomunikačních zařízení. Mnozí z nás si jistě již nedovedou život bez mobilního telefonu ani představit, a přitom všichni víme, že svým telefonováním.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Vizualizace projektu větrného parku Stříbro porovnání variant 13 VTE a menšího parku.
Světlo - - podstata, lom, odraz
METROPOLITNÍ PŘENOSOVÝ SYSTÉM
Model TCP/IP Fyzická vrstva.
Lokální počítačové sítě Novell Netware
Název materiálu: OPAKOVÁNÍ 1.POLOLETÍ - OTÁZKY
Využití elektromagnetického záření v praxi
1 Počítačové sítě Ústav automatizace inženýrských úloh a informatiky FAST VUT v Brně © 1999 – 2002, Michal Vojkůvka Základy informatiky a výpočetní techniky.
IDENTIFIKÁTOR MATERIÁLU: EU
Elektromagnetické záření a vlnění
Elektromagnetické vlny
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO:
Mikrovlnné systémy Bc. Jindřich Poledňák. mikrovlnné záření vlnová délka: 1mm – 1m od 70. let 20. století pro dálkový průzkum se využívají vlnové délky.
37. Elekromagnetické vlny
BEZDRÁTOVÉ MYŠI VYPRACOVALA: Naděžda Pištěková AKADEMICKÝ ROK: 2008/2009.
Tato prezentace byla vytvořena
Elektronické dálkoměry
Elektromagnetické vlnění
VII. Neutronová interferometrie II. cvičení KOTLÁŘSKÁ 7. DUBNA 2010 F4110 Kvantová fyzika atomárních soustav letní semestr
PŘENOSOVÉ CESTY (c) Tralvex Yeap. All Rights Reserved.
WiMAX - základy Mobilní systémy, PF, JČU. WiMAX forum Worldwide Interoperability Microwave Access Nezisková asociace založená v roce.
PŘEDNÁŠKA 6 Jiří Šebesta MRAR – Radiolokační a radionavigační systémy
UŽITÍ DÍLA § 12. (4) Právem dílo užít je a) právo na rozmnožování díla (§ 13), b) právo na rozšiřování originálu nebo rozmnoženiny díla (§ 14), c) právo.
Přenosová pásma bezdrátových sítí Wi-Fi
Antény a laděné obvody pro kmitočty AM
Bezdrátové sítě.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Jirous spol. s r.o. Vývoj a výroba wifi antén a příslušenství
Optický přenosový systém
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Elektromagnetické záření 2. část
1 Počítačové sítě Přenosový systém Jednoduchý spoj Lokální síť Rozlehlá síť.
Bezdrátové sítě dle standardu IEEE (WiFi)
Přenosová média Jan Suchánek. koaxiální kabel nízké pořizovací náklady, odolné vůči elektromagnetickému rušení, snadné připojení další stanice, nízká.
Zpracováno v rámci projektu FM – Education CZ.1.07/1.1.07/ Statutární město Frýdek-Místek Zpracovatel: Mgr. Lada Kročková Základní škola národního.
Optické difúzní vnitřní bezdrátové komunikace: distribuce optického signálu Ing. David Dubčák VŠB-Technická univerzita Ostrava Katedra elektroniky a telekomunikační.
Rozhlas AM - používané kmitočty
Satelitní systémy Mobilní systémy, PF, JČU. Telefonní (radiové) sítě Telefonní sítě Přepojování okruh Přenos hlasu Datové/IP sítě Přepojování paketů Přenos.
Bezdrátové sítě Používají se, pokud není možné propojení kabelem
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Optický kabel (fiber optic cable)
Základní parametry kabelů
Úvod do počítačových sítí Lekce 03 Ing. Jiří ledvina, CSc.
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Družicové datové přenosy. Družicové komunikační systémy jsou v dnešní době velmi důležitou součástí komunikačního řetězce. Doplňují pozemní kabelové,
Wifi, LAN a internet v elekt. drátech Počítačové sítě naší školy.
PB169 – Operační systémy a sítě Přenos dat v počítačových sítích Marek Kumpošt, Zdeněk Říha.
Odborný výcvik ve 3. tisíciletí Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ELIII ANTÉNY Obor:Elektrikář.
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Optické přenosové cesty.
NÁZEV ŠKOLY: S0Š Net Office, spol. s r. o., Orlová Lutyně AUTOR: Bc. Petr Poledník NÁZEV: Podpora výuky v technických oborech TEMA: Počítačové systémy.
Inf Sítě mobilních telefonů a GPS. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Přenos dat infračerveným zářením OB21-OP-EL-ELN-NEL-M
Odborný výcvik ve 3. tisíciletí Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ELIII RADIOKOMUNIKACE.
Charakteristiky síťových topologií OB21-OP-EL-KON-DOL-M Orbis pictus 21. století.
Rádio aspx?q= &id=1a408c.
Možnosti připojení k internetu
Seminář 1 Přenosová média
Radiové přenosové cesty
Transkript prezentace:

PŘENOSOVÉ CESTY (c) 1999. Tralvex Yeap. All Rights Reserved

BEZDRÁTOVÉ PŘENOSY (c) 1999. Tralvex Yeap. All Rights Reserved

PŘENOS ELEKTROMAGNETICKÝCH SIGNÁLŮ λ= c/f [m;m/s,Hz] ELEKTROMAGNETICKÁ VLNA SE MŮŽE ŠÍŘIT RŮZNÝM PROSTŘEDÍM. METALICKÉ VEDENÍ OPTICKÁ VLÁKNA RADIOVÉ PŘENOSOVÉ CESTY (c) 1999. Tralvex Yeap. All Rights Reserved

NEVÝHODOU VŠECH LINKOVÝCH (DRÁTOVÝCH) PŘENOSOVÝCH CEST JE JEJICH STACIONÁRNÍ POVAHA A NESCHOPNOST VYJÍT VSTŘÍC UŽIVATELI, KTERÝ SE POTŘEBUJE SE SVÝM POČÍTAČEM POHYBOVAT. (c) 1999. Tralvex Yeap. All Rights Reserved

TITANIC – PROČ ?? Guglielmo MARCONI (c) 1999. Tralvex Yeap. All Rights Reserved

BEZDRÁTOVÉ PŘENOSY (c) 1999. Tralvex Yeap. All Rights Reserved

(c) 1999. Tralvex Yeap. All Rights Reserved

KLASIFIKACE BEZDRÁTOVÝCH SÍTÍ PODLE TYPU SIGNÁLU RADIOVÉ SÍTĚ OPTICKÉ BEZDRÁTOVÉ SÍTĚ INFRAČERVENÉ SÍTĚ PODLE KMITOČTOVÉHO PÁSMA : LICENČNÍ VS. BEZLICENČNÍ PODLE UŽITÍ : BEZDRÁTOVÉ METROPOLITNÍ SÍTĚ (WMAN) LOKÁLNÍ SÍTĚ (WLAN) OSOBNÍ SÍTĚ (WPAN)

BEZDRÁTOVÉ RADIOVÉ PŘENOSY (c) 1999. Tralvex Yeap. All Rights Reserved

ROZDĚLENÍ FREKVENČNÍHO SPEKTRA (c) 1999. Tralvex Yeap. All Rights Reserved

ROZDĚLENÍ FREKVENČNÍHO SPEKTRA (c) 1999. Tralvex Yeap. All Rights Reserved

HOSPODAŘENÍ S FREKVENCEMI (c) 1999. Tralvex Yeap. All Rights Reserved

PROBLÉMY BEZDRÁTOVÝCH PŘENOSŮ (c) 1999. Tralvex Yeap. All Rights Reserved

VYSÍLÁNÍ V ÚZKÉM PÁSMU A ROZPROSTŘENÉM SPEKTRU (c) 1999. Tralvex Yeap. All Rights Reserved

RADIOVÉ PŘENOSY PRO PŘENOSY DAT LZE VYUŽÍT I ŠÍŘENÍ ELEKTROMAGNETICKÝCH VLN V RÁDIOVÉ ČÁSTI SPEKTRA - DÍKY SVÉMU ŠÍŘENÍ PROSTOREM TYTO VLNY NEVYŽADUJÍ ŽÁDNOU "POKLÁDKU" PŘENOSOVÝCH CEST JAKO "DRÁTOVÁ" PŘENOSOVÁ MÉDIA, COŽ JE JEJICH OBROVSKOU PŘEDNOSTÍ. NA DRUHOU STRANU SE VLASTNOSTI RÁDIOVÝCH VLN MĚNÍ V ZÁVISLOSTI NA POUŽITÉ FREKVENCI - PŘI NIŽŠÍCH FREKVENCÍCH TYTO VLNY SICE DOKÁŽÍ "OBCHÁZET" VŠELIJAKÉ TERÉNNÍ PŘEKÁŽKY, ALE JEJICH "SÍLA" RYCHLE KLESÁ SE VZDÁLENOSTÍ OD VYSÍLAJÍCÍHO ZDROJE. VLNY VYŠŠÍCH FREKVENCÍ ZASE MAJÍ TENDENCI ŠÍŘIT SE VÍCE PŘÍMOČAŘE, A LZE JE TUDÍŽ MNOHEM LÉPE SMĚROVAT, RESP. PŘESNĚJI ZACÍLIT NA URČITÝ KONKRÉTNÍ CÍL. NA DRUHOU STRANU S ROSTOUCÍ FREKVENCÍ JSOU RÁDIOVÉ PŘENOSY CITLIVĚJŠÍ NA ATMOSFÉRICKÉ PODMÍNKY, NAPŘÍKLAD NA DÉŠŤ ČI MLHU, SMOG APOD. (c) 1999. Tralvex Yeap. All Rights Reserved

LZE JE JEN VELMI OBTÍŽNĚ MODULOVAT VYŠŠÍ ČÁSTI SPEKTRA ( UV, RENTGENOVÉ ZÁŘENÍ, ČI GAMA ZÁŘENÍ) BY SICE MĚLY BÝT K PŘENOSŮM DAT NEJVÝHODNĚJŠÍ (PROTOŽE MAJÍ NEJVĚTŠÍ ŠÍŘKU PŘENOSOVÉHO PÁSMA, A MĚLY BY DOSAHOVAT NEJVYŠŠÍCH PŘENOSOVÝCH RYCHLOSTÍ), ALE Z PRAKTICKÝCH DŮVODŮ NEJSOU PRO DATOVÉ PŘENOSY ZATÍM POUŽITELNÉ. LZE JE JEN VELMI OBTÍŽNĚ MODULOVAT JSOU LIDSKÉMU ZDRAVÍ ŠKODLIVÉ (c) 1999. Tralvex Yeap. All Rights Reserved

PODLE USPOŘÁDÁNÍ PŘENOSOVÉ CESTY MŮŽEME ROZLIŠOVAT RÁDIOVÉ SPOJE. VŠESMĚROVÉ, KTERÉ POKRÝVAJÍ URČITÉ ÚZEMÍ SIGNÁLEM ( ROZHLASOVÉ A TV VYSÍLAČE, BUŇKY SYSTÉMŮ MOBILNÍCH TELEFONŮ APOD.) ÚZCE SMĚROVÉ, SLOUŽÍCÍ K PŘEKLENUTÍ URČITÉ LINIOVÉ VZDÁLENOSTI ( NAPŘ. RADIORELÉOVÉ SPOJE) DRUŽICOVÉ, KTERÉ VYUŽÍVAJÍ SPOJENÍ PŘES TELEKOMUNIKAČNÍ DRUŽICI (GEO, MEO, LEO). (c) 1999. Tralvex Yeap. All Rights Reserved

SMĚROVÝ SPOJ (c) 1999. Tralvex Yeap. All Rights Reserved

DRUŽICOVÁ KOMUNIKACE ARTHUR C. CLARK

DRUŽICOVÝ SPOJ (c) 1999. Tralvex Yeap. All Rights Reserved

LEO SATELITY S NÍZKOU OBĚŽNOU DRAHOU LOW EARTH ORBIT 700-1400 KM NAD POVRCHEM, NEUSTÁLE SE POHYBUJÍ A POKRÝVAJÍ URČITÝ POVRCH VŽDY JEN PO NĚKOLIK VTEŘIN VÝHODA : MENĚÍ ZPOŽDĚNÍ NEŽ GEO (c) 1999. Tralvex Yeap. All Rights Reserved

GEO GEOSYNCHRONOUS EARTH ORBIT CCA 36 TISÍC KM NAD ROVNÍKEM OBSLUHUJÍ OBLAST POKRÝVAJÍCÍ CCA 41% POPVRCHU ZEMĚ VYUŽITÍ: TELEFONY, TELEVIZNÍ VYSÍLÁNÍ DBS-DIRECT BROADCAST SATELLITE A VOJENSKÉ ÚČELY (c) 1999. Tralvex Yeap. All Rights Reserved

ELEKTROMAGNETICKÉ VLNY V RADIOVÉ ČÁSTI SPEKTRA LZE POMĚRNĚ SNADNO GENEROVAT I PŘIJÍMAT, JEJICH DOSAH MŮŽE BÝT RELATIVNĚ VELKÝ A MOHOU DOKONCE PROSTUPOVAT I BUDOVAMI. NIŽŠÍ FREKVENCE SNÁZE PROCHÁZÍ SKRZ PŘEKÁŽKY, ALE JEJICH SÍLA S NARŮSTAJÍCÍMI VZDÁLENOSTMI VELMI RYCHLE SLÁBNE. VYŠŠÍ FREKVENCE MAJÍ TENDENCI ŠÍŘIT SE VÍCE PŘÍMOČAŘE, A ODRÁŽET OD NEJRŮZNĚJŠÍCH PŘEKÁŽEK. MNOHEM VÍCE JSOU ZÁVISLÉ NA POVĚTRNOSTNÍCH VLIVECH. (c) 1999. Tralvex Yeap. All Rights Reserved

MIKROVLNNÉ PŘENOSY V PÁSMU NAD 100 MHz SE ELEKTROMAGNETICKÉ VLNY MOHOU ŠÍŘIT VELMI PŘÍMOČAŘE. JE MOŽNÉ SOUSTŘEDIT JEJICH ENERGII DO POMĚRNĚ ÚZCE SMĚROVANÉHO PAPRSKU. DOSAH POUZE NA PŘÍMOU VIDITELNOST ( V PRAXI DESÍTKY KILOMETRŮ – PAK JE NUTNO POUŽÍT RETRANSLACE) V PŘÍPADĚ POUŽITÍ VŠESMĚROVÝCH ANTÉN JE MOŽNÉ SIGNÁLEM POKRÝT VĚTŠÍ PLOCHU – ŘEŠENY SYSTÉMY GSM. (c) 1999. Tralvex Yeap. All Rights Reserved

MICROWAVE TRANSMISSIONS (MIKROVLNNÉ PŘENOSY) JAKO "MIKROVLNNÉ" SE OBVYKLE OZNAČUJÍ RÁDIOVÉ PŘENOSY NA FREKVENCÍCH NAD 100 MHZ. PŘI TĚCHTO FREKVENCÍCH JIŽ JE MOŽNÉ SOUSTŘEDIT ENERGII RÁDIOVÝCH VLN DO POMĚRNĚ ÚZKÉHO SVAZKU A TEN CÍLENĚ NASMĚROVAT (POMOCÍ VHODNÉ PARABOLICKÉ ANTÉNY) NA KONKRÉTNÍ CÍL. TEN ALE MUSÍ BÝT V DOSAHU PŘÍMÉ VIDITELNOSTI, PROTOŽE TAKOVÝTO SVAZEK JEN VELMI TĚŽKO ČI VŮBEC NEDOKÁŽE OBCHÁZET ANI PROCHÁZET TERÉNNÍ ANI JINÉ PŘEKÁŽKY, NAPŘÍKLAD BUDOVY. JELIKOŽ SE TAKOVÝTO SVAZEK ŠÍŘÍ PO IDEÁLNÍ PŘÍMCE, VADÍ MU I ZAOBLENÍ ZEMSKÉHO POVRCHU. PROTO SE V PRAXI UMISŤUJÍ VYSÍLAČE I PŘIJÍMAČE NA VHODNĚ VYVÝŠENÁ MÍSTA, NAPŘÍKLAD NA ANTÉNNÍ STOŽÁRY ČI VĚŽE. KVŮLI ZAKŘIVENÍ ZEMSKÉHO POVRCHU A TERÉNNÍM PŘEKÁŽKÁM SE PAK MUSÍ BUDOVAT MIKROVLNNÉ PŘENOSOVÉ TRASY NA VĚTŠÍ VZDÁLENOSTI JAKO ŘETĚZCE PŘIJÍMAČŮ A VYSÍLAČŮ, KTERÉ FUNGUJÍ JAKO RETRANSLAČNÍ STANICE. (c) 1999. Tralvex Yeap. All Rights Reserved

INFRARED TRANSMISSIONS (INFRAČERVENÉ PŘENOSY) PŘENOSY POMOCÍ VLN V INFRAČERVENÉ ČÁSTI SPEKTRA JSOU DNES OBLÍBENÝM ŘEŠENÍM NA VELMI KRÁTKOU VZDÁLENOST, NAPŘÍKLAD PRO KOMUNIKACI MEZI NOTEBOOKY, TISKÁRNAMI, MOBILNÍMI TELEFONY, OSOBNÍMI ORGANIZÉRY ATD. INFRAČERVENÉ VLNY NEPROSTUPUJÍ SKRZ PŘEKÁŽKY, A TUDÍŽ PŘENOSY V JEDNÉ MÍSTNOSTI NEMOHOU OHROZIT EVENTUELNÍ SOUBĚŽNÝ PŘENOS V JINÉ MÍSTNOSTI (A ZE STEJNÉHO DŮVODU JSOU I RELATIVNĚ ODOLNÉ VŮČI VNĚJŠÍMU ODPOSLECHU). NA OTEVŘENÉM PROSTRANSTVÍ, MIMO BUDOVY, VŠAK INFRAČERVENÉ PŘENOSY NEJSOU POUŽITELNÉ, PROTOŽE NAŠE SLUNCE SVÍTÍ V INFRAČERVENÉ ČÁSTI SPEKTRA STEJNĚ INTENZIVNĚ, JAKO V JEHO VIDITELNÉ ČÁSTI. (c) 1999. Tralvex Yeap. All Rights Reserved

INFRAČERVENÉ PŘENOSY Namíříte, zmáčknete tlačítko a televize se zapne. Toť vše. Tedy až na to že se přenos děje pomocí přerušovaného modulovaného infračerveného paprsku o vlnové délce přibližně 940 nanometrů, modulační frekvencí obyčejně 36 - 40 kHz (podle použitého standardu) vysílaného IR LED a snímaného infračerveným fototranzistorem. (c) 1999. Tralvex Yeap. All Rights Reserved

LIGHTWAVE TRANSMISSIONS (SVĚTELNÉ PŘENOSY, PŘENOSY VE VIDITELNÉ ČÁSTI SPEKTRA) POUŽITÍ OPTICKÝCH VLÁKEN PŘEDSTAVUJE "VEDENOU" VARIANTU PŘENOSŮ VE VIDITELNÉ ČÁSTI SPEKTRA, KDY SVĚTELNÝ PAPRSEK JE VEDEN OPTICKÝM VLÁKNEM AŽ NA MÍSTO SVÉHO URČENÍ. STEJNĚ TAK JE ALE MOŽNÉ NASMĚROVAT ÚZKÝ PAPRSEK SVĚTLA VE VIDITELNÉ ČÁSTI SPEKTRA (TYPICKY POMOCÍ VHODNÉHO LASERU) A NECHAT JEJ ŠÍŘIT VZDUCHEM. TAKOVÉTO LASEROVÉ PŘENOSOVÉ SYSTÉMY JSOU JIŽ ZE SVÉ PODSTATY JEDNOSMĚRNÉ, A V PRAXI SE PROTO POUŽÍVAJÍ DVOJICE "PROTISMĚRNÝCH" PAPRSKŮ. NEVÝHODOU JE RELATIVNĚ VELKÁ ZÁVISLOST NA ATMOSFERICKÝCH PODMÍNKÁCH, KTERÉ MOHOU ZMĚNIT CÍLENÉ NASMĚROVÁNÍ ÚZKÉHO LASEROVÉHO PAPRSKU TAK, ŽE MINE SVŮJ CÍL.   (c) 1999. Tralvex Yeap. All Rights Reserved

PŘÍKLADEM BEZDRÁTOVÝCH PŘENOSŮ MOHOU BÝT TECHNOLOGIE ŘAZENÉ DO KATEGORIE FWA (FIXED WIRELESS ACCESS), U NÁS POUŽÍVANÉ V LICENCOVANÝCH PÁSMECH 26 GHZ A 3,5 GHZ, ČI RŮZNÁ ŘEŠENÍ SPADAJÍCÍ DO KATEGORIE WLL (WIRELESS LOCAL LOOP) REALIZUJÍCÍ BEZDRÁTOVOU VARIANTU MÍSTNÍ SMYČKY. (c) 1999. Tralvex Yeap. All Rights Reserved

BEZDRÁTOVÉ NORMY

POROVNÁNÍ WLAN

POROVNÁNÍ BEZDRÁTOVÝCH TECHNOLOGIÍ

RYCHLOSTI MOBILNÍHO BEZDRÁTOVÉHO PŘÍSTUPU

OPAKOVÁNÍ PROVEĎTE ZÁKLADNÍ ROZDĚLENÍ PŘENOSOVÝCH CEST PRO PŘENOS SIGNÁLU A STRUČNĚ JE CHARAKTERIZUJTE. PROVEĎTE SROVNÁNÍ METALICKÉ PŘENOSOVÉ CESTY ŘEŠENÉ KOAXIÁLNÍM KABELEM A KROUCENOU DVOULINKOU ( VÝHODY, NEVÝHODY PRAKTICKÉ VYUŽITÍ). VYSVĚTLETE PRINCIP PŘENOSOVÉ CESTY REALIZOVANÉ OPTICKÝMI KABELY (PROČ JE OPTIKA PŘENOSOVÁ CESTA BUDOUCNOSTI ?). CO VÍTE O BEZDRÁTOVÝCH PŘENOSOVÝCH CESTÁCH (ZÁKLADNÍ VLASTNOSTI PRO PŘENOS SIGNÁLU BEZDRÁTOVÝMI PŘENOSOVÝMI CESTAMI, UVEĎTE PŘÍKLADY BEZDRÁTOVÝCH PŘENOSOVÝCH SYSTÉMŮ). VYSVĚTLETE ROZDÍLY V TOPOLOGII POČÍTAČOVÝCH SÍTÍ ŘEŠENÝCH KOAXIÁLNÍM KABELEM A KROUCENOU DVOULINKOU (VÝHODY, NEVÝHODY). (c) 1999. Tralvex Yeap. All Rights Reserved