Lineární regrese.

Slides:



Advertisements
Podobné prezentace
Lineární regrese.
Advertisements

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační.
Strategické otázky výzkumníka 1.Jaký typ výzkumu zvolit? 2.Na jakém vzorku bude výzkum probíhat? 3.Jaké výzkumné metody a techniky uplatnit?
Kapitola 1: Popisná statistika jednoho souboru2  Matematická statistika je věda, která se zabývá studiem dat vykazujících náhodná kolísání.  Je možno.
Redukce lůžek Existuje prostor pro redukci lůžek akutní péče?
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ.
© Institut biostatistiky a analýz SPEKTRÁLNÍ ANALÝZA Č ASOVÝCH Ř AD prof. Ing. Jiří Holčík, CSc.
Význam diferenciálních rovnic převzato od Doc. Rapanta.
Analýza kvantitativních dat III. – praktické aplikace vícerozměrných statistických metod Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 2/3/2016.
STATISTICKÉ METODY V GEOGRAFII. Odhady parametrů intervaly spolehlivosti.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Metodologie ISK Základy statistického zpracování dat Ladislava Suchá, 28. dubna 2011.
ČÍSLO PROJEKTUCZ.1.07/1.5.00/ ČÍSLO MATERIÁLUDUM 7 – Lineární rovnice – teorie NÁZEV ŠKOLY Střední škola a Vyšší odborná škola cestovního ruchu,
Kvalita podnikatelského prostředí a ekonomická výkonnost
Testování hypotéz Testování hypotéz o rozdílu průměrů
Historická sociologie, Řízení a supervize
OCEŇOVÁNÍ CENNÝCH PAPÍRŮ Přednáška č. 2
Interpolace funkčních závislostí
7. Statistické testování
Rozvoj zaměstnanosti ve vybraném podniku
„VĚDA JE, DÁVÁ SPRÁVNÉ ÚDAJE, NEKLESEJTE NA MYSLI, ONA VÁM TO VYČÍSLÍ“
Matematika 3 – Statistika Kapitola 4: Diskrétní náhodná veličina
Lineární funkce - příklady
Řešení nerovnic Lineární nerovnice
Statistické metody a zpracování dat 1 (podzim 2016) Klára Čížková
Faktorová analýza cíl faktorové analýzy základní pojmy, postup
Faktorová analýza cíl faktorové analýzy základní pojmy, postup
úlohy lineárního programování
Financováno z ESF a státního rozpočtu ČR.
ADDS cviceni Pavlina Kuranova.
Jedno-indexový model a určení podílů cenných papírů v portfoliu
Operační výzkum Lineární programování – cvičení
Základy zpracování geologických dat testování statistických hypotéz
Regrese – jednoduchá regrese
Maďarská metoda Kirill Šustov Michal Bednář Stanislav Běloch
Párový neparametrický test
SŠ-COPT Uherský Brod Mgr. Renáta Burdová
Statistické metody pro vysvětlující otázky
4.1 – 4.3 Lineární nerovnice i jednoduchý podílový tvar
Základy zpracování geologických dat testování statistických hypotéz
Parametry polohy Modus Medián
SÁRA ŠPAČKOVÁ MARKÉTA KOČÍBOVÁ MARCELA CHROMČÁKOVÁ LUKÁŠ BARTOŠ B3E1
Rozšířené modely časových řad
Míry asociace obecná definice – síla a směr vztahu
MATEMATIKA Soustavy dvou lineárních rovnic o dvou neznámých.
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Vladimíra Houšková Název materiálu:
FSS MUNI, katedra SPSP Kvantitativní výzkum x118 Téma 11: Korelace
Kvadratické nerovnice
NOMINÁLNÍ VELIČINY Odhad hodnoty pravděpodobnosti určitého jevu v základním souboru Test hodnoty pravděpodobnosti určitého jevu v základním souboru Srovnání.
Řešení nerovnic Lineární nerovnice
8.1.3 Lineární obal konečné množiny vektorů
Spojité VELIČINY Vyšetřování normality dat
PSY252 Statistická analýza dat v psychologii II
Rovnice s absolutními hodnotami
Korelace a elaborace aneb úvod do vztahů proměnných
XII. Binomické rozložení
Metody sociálního výzkumu 6. blok
3. přednáška Laplaceova transformace
Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Teorie chyb a vyrovnávací počet 1
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
SEM – speciální přístupy
Lineární regrese.
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Teorie chyb a vyrovnávací počet 1
Matematika + opakování a upevňování učiva
Lineární funkce a její vlastnosti
Teorie chyb a vyrovnávací počet 1
Grafy kvadratických funkcí
Teorie chyb a vyrovnávací počet 2
Transkript prezentace:

Lineární regrese

Regrese a možné zdroje informací Česky: Hebák a kol.(2.díl,1-150), Hendl(237-295,351-385) , Meloun-Militký, Zvára

4 typy lineární závislosti 2 kardinálních proměnných Silná pozitivní závislost Slabá pozitivní závislost Silná negativní závislost Nulová závislost Prvotní vysvětlení korelačního koeficientu na základě obrázků

4 typy lineární závislosti 2 kardinálních proměnných Silná pozitivní závislost r = 0,97

4 typy lineární závislosti 2 kardinálních proměnných Silná negativní závislost r = - 0,97

4 typy lineární závislosti 2 kardinálních proměnných Slabá pozitivní závislost r = 0,35

4 typy lineární závislosti 2 kardinálních proměnných Nulová závislost r = 0

Základní otázky v lineární regresi Lze nalézt lineární vztah mezi proměnnými? Jak velký vliv má nezávisle proměnná X na proměnnou závislou Y? Jak moc ji vysvětluje? Jakou konkrétní hodnotu bude mít závisle proměnná Y, když budeme vědět, jakou hodnotu má proměnná X – dokáže tedy z hodnot nezávisle proměnné predikovat hodnoty závisle proměnné. U více nezávislých proměnných se nabízí i další otázky

Regresní úkol a interpretace parametrů snaha graficky vystihnout závislost a příslušnou regresní křivku vyjádřit rovnicí význam parametrů u lineární regrese-konstanta - průsečík s osou y (jaká je hodnota závisle proměnné při nulové hodnotě nezávislé proměnné-pozor někdy pro tuto interpretaci není z logického hlediska prostor), regresní koeficient-sklon křivky (o kolik vzroste závisle proměnná, vzroste-li nezávisle proměnná o jednotku)

!!!Regrese předpoklady!!! regrese předpokládá volbu kombinace vysvětlujících proměnných, které jsou kardinální, nezávislá proměnná může být i dichotomická Nekorelovanost nezávislých proměnných (opak multikolinearita)

Metody odhadu parametrů metoda nejmenších čtverců MNČ (resp. OLS)-napozorované hodnoty prokládáme námi zvolenou křivkou tak, aby součet čtvercových odchylek regresní křivky od napozorovaných hodnot byl minimální (toto kritérium vede k jednoznačnému řešení, pokud bychom pouze chtěli aby součet všech odchylek byl nulový-což je u MNČ mj. také splněno, bylo by takových křivek nekonečně mnoho a jejich kvalita by byla různá - nakreslit !!!)

Regrese jednoduchá a vícenásobná Jednoduchá - jedna závislá (vysvětlovaná) proměnná a jedna nezávislá (vysvětlující) Vícenásobná - jedna závislá (vysvětlovaná) proměnná a více nezávislých (vysvětlujících) vždy před použitím analýzy by měla předcházet úvaha o souvislostech, tedy budujeme jen model, který má nějaké teoretické opodstatnění!!!

Regrese v SPSS výsledkem procedury v SPSS je regresní rovnice, otestování významnosti regresního modelu a jednotlivých parametrů včetně signalizace jednotlivých problémů F-test Ho: Model není dobrý (požadujeme Sig<0.05) T-testy pro jednotlivé proměnné Ho: Proměnná do modelu nepatří ((požadujeme Sig<0.05) R2 (R-Square) po vynásobení stem jde o procento vysvětleného rozptylu závislé proměnné za pomoci nezávislé (nezávislých) proměnné

Regrese v SPSS-závislost příjmu na počtu let vzdělání RSquare- po vynásobení stem jde o procento vysvětleného rozptylu závislé proměnné za pomoci nezávislé (nezávislých) proměnné

Regrese v SPSS-závislost příjmu na počtu let vzdělání F-test Ho: Model není dobrý H1: Lze ho použít (požadujeme tedy Sig<0.05)

Regrese v SPSS-závislost příjmu na počtu let vzdělání T-testy pro jednotlivé proměnné Ho: Proměnná do modelu nepatří (požadujeme Sig<0.05) Z hodnot v tabulce lze napsat rovnici: Příjem= 1612 + 624* roky vzdělání Osoba která má o rok vyšší vzdělání má v průměru o 625 Kč více

Regrese v SPSS-závislost příjmu na počtu let vzdělání T-testy pro jednotlivé proměnné Ho: Proměnná do modelu nepatří (požadujeme Sig<0.05) Z hodnot v tabulce lze napsat rovnici: Příjem= 1612 + 624* roky vzdělání Osoba která má o rok vyšší vzdělání má v průměru o 625 Kč více

Regrese v SPSS-závislost příjmu na počtu let vzdělání a pohlaví Obě proměnné v modelu správně Z hodnot v tabulce lze napsat rovnici: Příjem= -476 + 626* roky vzdělání + 3800*pohlaví(je muž) Osoba která má o rok vyšší vzdělání má v průměru o 625 Kč více Pokud se nic dalšího nezmění (tzv. ceteris paribus) Osoba, která je muž má má v průměru o 3800 Kč více

Regrese-umělé proměnné jako vysvětlující proměnné lze použít i nominální či ordinální proměnné převedením na umělé (dummy) proměnné - umělých proměnných je poté o jednu méně než kategorií původní proměnné "vynechaná proměnná" odpovídá kategorii vůči níž se budou ostatní kategorie porovnávat-ukázka na proměnné vzdělání (vytvoříme 3umělé proměnné-SŠ bez, SŠ s mat. a VŠ), tedy vynechaná je ZŠ oproti ní všechny srovnáváme

Regrese a její problémy multikolinearita - závislost mezi vysvětlujícími proměnnými, je téměř vždy přítomná, problémem je škodlivá multikolinearita zejm. perfektní multikolinearita - pak není možno odhadovat regresní parametry metodou nejmenších čtverců měření škodlivé multikolinearity - orientační kritérium alespoň jeden párový korelační koeficient mezi vysvětlujícími proměnnými ve výši 0,8 (existují i rozličné exaktní testy), pro výpočty při existenci škodlivé multikolinearity se užívá tzv. hřebenové regrese