Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Parabola a přímka Vzájemná poloha Paraboly a přímky.

Podobné prezentace


Prezentace na téma: "Parabola a přímka Vzájemná poloha Paraboly a přímky."— Transkript prezentace:

1 Parabola a přímka Vzájemná poloha Paraboly a přímky

2 Hledání společných bodů přímky a paraboly Rovnice paraboly: y 2 + 2rx + 2sy + t = 0 x 2 + 2rx + 2sy + t = 0 Rovnice přímky: parametrická x = a 1 + tu 1, y = a 2 + tu 2 obecná ax + by + c = 0 směrnicováy = kx + q Dosadíme do rovnice paraboly za proměnné x či y z obecné rovnice či směrnicové rovnice přímky Tip: je vhodnější za tu proměnnou, která nemá druhou mocninu V případě parametrické rovnice přímky dosadíme do rovnice paraboly za obě proměnné x i y

3 Pokud vznikne kvadratická rovnice, pak Podle hodnoty diskriminantu (D) jsou: 2 společné body (D>0) – sečna jeden společný bod (D=0) – tečna žádný společný bod (D<0) – vnější přímka Sečna:

4 Pokud vznikne kvadratická rovnice, pak Podle hodnoty diskriminantu (D) jsou: 2 společné body (D>0) – sečna jeden společný bod (D=0) – tečna žádný společný bod (D<0) – vnější přímka Tečna:

5 Pokud vznikne kvadratická rovnice, pak Podle hodnoty diskriminantu (D) jsou: 2 společné body (D>0) – sečna jeden společný bod (D=0) – tečna žádný společný bod (D<0) – vnější přímka Vnější přímka:

6 Pokud kvadratická rovnice nevznikne, řešíme lineární rovnici: Výsledkem je sečna s jedním společným bodem (přímka je rovnoběžná s osou paraboly)

7 Zjisti vzájemnou polohu přímky p: 3x-7y+30=0 a paraboly y 2 =9x Z rovnice přímky vyjádříme proměnnou x: Dosadíme za x do rovnice paraboly: Upravíme do tvaru kvadratické rovnice : y 2 =21y-90 y 2 -21y+90=0 Vypočteme diskriminant: =81 Vypočteme 2 řešení pro y: y 1 =15 a y 2 =6 Vypočteme z rovnice paraboly či přímky hodnoty x. x 1 =25 a x 2 =4 Přímka je sečnou paraboly. Protíná ji v bodech A[25,15] a B[4,6]


Stáhnout ppt "Parabola a přímka Vzájemná poloha Paraboly a přímky."

Podobné prezentace


Reklamy Google