Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Aplikace elektroanalytických metod

Podobné prezentace


Prezentace na téma: "Aplikace elektroanalytických metod"— Transkript prezentace:

1 Aplikace elektroanalytických metod
Pavel Janderka Katedra teoretické a fyzikální chemie Přírodovědecká fakulta MU

2 Odborný profil a zájmy studium elektrochemického štěpení chemických vazeb, možnost využití EC pro transformace a odbourání některých organických polutantů, zejména halogenovaných látek, spojení elektrochemie s jinými spektroskopickými metodami, počítačové měření a moderní metody evaluace experimentálních dat.

3 zařazení a souvislosti
O čem bude řeč O čem by mohla být řeč zařazení a souvislosti historie základní pojmy principy trendy

4 Postavení elektrochemie podle klasického dělení
fyzikální chemie elektrochemie rovnováhy – kinetika – chování v roztocích (taveninách) – fázová rozhraní

5 Jiné elektrochemické souvislosti
zdroje proudu, galvanické články, baterie, akumulátory, palivové články, elektrochemické (elektrosyntetické) aplikace v organické a anorganické technologii, např. výroba chlóru, hydroxidu sodného, speciální elektrosyntézy např. adiponitrilu (pro výrobu Nylonu), výroba Sorbitolu redukcí glukózy, koroze, metalurgie, elektrorafinace kovů, výroba hliníku, čištění odpadních vod (odstraňování organických i anorganických nečistot)….

6 Zařazení podle aplikačního hlediska
Chromatografické metody Spektroskopické metody Elektroanalytické metody

7 Elektrochemické instrumentální metody
lépe Elektrochemické instrumentální metody ústí polarografické kapiláry

8 Klasické členění Konduktometrie Polovodičové vodivostní senzory
Potenciometrie Potenciometrické titrace Potenciostatická coulometrie Coulometrické titrace Elektrogravimetrie Elektroforetické metody Izotachoforéza Amperometrie Voltamperometrické metody Potenciometrie za konstantního proudu

9 Dělení podle elektrické veličiny určující rovnováhu na elektrodě
metody u nichž je kontrolován potenciál pracovní elektrody metody u nichž je kontrolován proud (nebo náboj) metody u nichž je kontrolován a.c. potenciál a proud polarografie (různé druhy), voltametrie (různé druhy), chronoamperometrie, chronocoulometrie… chronopotenciometrie, coulostatická měření, metody s programovaným proudem… AC-polarografie, SW-polarografie…

10 Rozdělení voltametrických metod
Rovnovážné Přechodové - poruchové Žádná nebo velmi pomalá změna napětí nebo proudu, systém se stihne dostat – dostávat do rovnovážného stavu rychlost polarizace v ~ mV/s Je aplikována „porucha“ např. dE/dt V/s i více nebo pulzy napěťové či proudové

11 The Nobel Prize in Chemistry 1959
"for his discovery and development of the polarographic methods of analysis" Jaroslav Heyrovsky Czechoslovakia Polarographic Institute of the Czechoslovak Academy of Science Prague, Czechoslovakia b d. 1967

12 Nejjednodušší polarograf
WE CE, RE

13 Základní pravidlo polarografie
Dionýz Ilkovič narozen 1907, Šarišský Štiavnik, Slovensko zemřel 1980, Bratislava, Slovensko nalezl vztah mezi limitním polarografickým proudem a koncentrací elektroaktivní látky v roztoku - Ilkovičova rovnice

14 Digitálně simulovaný DC polarogram
id /2 id E1/2

15 Porovnání polarogramu a CV-gramu

16 INTERNET Google (k 2.6.2006) (bez českých mutací)
electrochemistry refs bioelectrochemistry refs electroanalytical refs

17 ISI Web of Knowledge http://portal.isiknowledge.com 1980 – 2006
electrochemical > documents electrochemistry documents

18 Výhody CENA – RYCHLOST STANOVENÍ – MALÁ SPOTŘEBA A POTŘEBA VZORKU
RELATIVNĚ NÍZKÉ INVESTIČNÍ NÁKLADY SNADNO MĚŘITELNÉ VELIČINY PROUD-NAPĚTÍ-ČAS-NÁBOJ

19 AGREGÁTNÍ CHARAKTER PROUDU
Nevýhody MOLEKULÁRNÍ NESPECIFICITA kvalita - napětí AGREGÁTNÍ CHARAKTER PROUDU „měříme celkový proud jako součet“ proud difúzní + kinetický + adsorpční + …. je vhodné doplnění dalšími metodami, pokud možno on-line

20 jak získat dodatečné informace
on-line potlačení některých typů proudů, tast-polarografie, PP, DPP, SW, AC .. matematické manipulace (akumulace, derivace, integrace, simulace a fitování), off-line numerická eliminace některých proudů, on line spojení s další experimentální metodou (UV, IČ, EPR ..)

21 napětí E a proud i versus potenciál elektrody a elektrodová kinetika
redukce, kred a Ox + z e b Red oxidace, kox elementární reakce přenosu - výměny elektronu charakteristiky: rychlostní konstanty redukce, oxidace, kred,ox rovnovážná konstanta redoxní reakce, Kr standardní potenciál této reakce DE0 Gibbsova energie této reakce DG0

22 Od potenciometrie k voltametrii potenciál - proud
Nernstova rovnice relace mezi potenciálem elektrody a koncentrací Vztah mezi potenciálem a Gibbsovou energií (standardní veličiny)

23 Rychlost reakce přenosu náboje  proud
k0 standardní heterogenní rychlostní konstanta (cm/s), k je funkcí potenciálu !!!

24 Příklady Cd2+ + 2e- Cd k0 = 1 cm/s Pb2+ + 2e- Pb k0 ~ 2 cm/s
Tl e Tl k0 ~ 2 cm/s Zn e Zn k0 ~ 10-2 – cm/s

25 Vliv heterogenní rychlostní konstanty
k = 1x10-6 – 1x101 cm/s

26 Typický voltamogram DE=59/|z| mV

27 H2SO4, 0,5M, Pt-elektroda

28 Tvar E/i křivky faktory související s povahou analytu – mechanismus elektrodové reakce, počet přenášených elektronů, hodnoty heterogenních rychlostních konstant, koncentrace, předřazené nebo následné chemické reakce, adsorpce analytu nebo produktu nebo interferujících látek … faktory vnější – rozpouštědlo, přítomnost dalších solí, přítomnost dalších příměsí, nečistot, matrice vzorku, rozsah polarizace, rychlost polarizace … způsob měření …

29 zvláštnosti digitálního měření

30 Co lze sledovat s CV (mimo analytických aspektů)
Stabilita oxidované a redukované formy. Molekulární adsorpce v průběhu redoxního procesu. Měření kinetických rychlostních konstant. Studium reakčního mechanizmu. Určení reverzibility elektrochemické reakce. Určení standardního redoxního potenciálu E0= (Epa+ Epc)/2 Určení počtu přenášených elektronů ∆E = Epa- Epc= 58/n

31 Elektrochemie organických látek
Redukce aromatické uhlovodíky, dusík obsahující látky (nitro-, nitrozo-, azo-, diazo-, diazonium-, heterocykly…), halogenované uhlovodíky, karbonylové sloučeniny (estery, karbonyly, laktony, amidy…), síru obsahující látky, oniové sloučeniny… Oxidace uhlovodíky, alkoholy, fenoly, amíny, aminokyseliny, etery, sulfidy, disulfidy, kyseliny, thiokyseliny, heterocykly… často spojeno s následným „bond breaking“ – „bond making“

32 Některé praktické aspekty
rozpouštědlo: voda, polární protická i aprotická nevodná rozpouštědla – acetonitril, dimethylformamid, propylenkarbonát, dimethylsulfoxid, alkoholy, ketony, halogenalkany ….kapalný amoniak…. elektrody: kovy, především Pt, Au, Hg ale i neušlechtilé, polykrystalické i monokrystalické, uhlík v mnoha podobách (vč. diamantu), polovodiče zejména In-Ti oxid, speciální elektrody, opticky transparentní elektrody, mikroelektrody, rozhraní dvou nemisitelných kapalin…

33 voda jako rozpouštědlo v elektrochemii

34 Příklady rozpouštědel
Rozpouštědlo teplota tání, 0C teplota varu, 0C rel. permitivita voda 100 78,3 propylenkarbonát -54,5 241,7 64,96 dimethylsulfoxid 18,5 189 46,95 dimethylformamid -60,4 153 36,71 acetonitril -43,8 81 35,94 nitrobenzen 5,8 210 34,78 methanol -97,7 64,5 32,66 ethanol -114,5 24,55 aceton -94,7 56,1 20,56 DMF DMSO PC

35 Referenční elektrody a soli
klasické vodné: kalomelová, stříbrohalogenidové, merkurosulfátová, merkurooxidová, vodíková… nevodné elektrody: Ag/Ag+ (dusičnan, chloristan) v nevodném rozpouštědle, dobře definovaný redoxní systém jako ferocen/fericinium (FeII /FeIII) a jiné metaloceny … nosné elektrolyty: silné kyseliny (minerální), hydroxidy, soli, anorganické (chloridy, chloristany, tetrafluoroboritany…), často – oniové soli (amoniové, fosfoniové, arsoniové…), např. tetraethylamonium chloristan…

36 Příklad moderního záznamu
Současné určení 15 nM Cu2+, 15 nM Pb2+, 15 nM Cd2+, 11 nM Ni2+, 11 nM Co2+ a 15 nM Zn2+ v 82 mM amoniakálním pufru pH 9.24, diferenciální pulzní voltametrie s katodickým strippingem

37 Delor 103 Pufrovaný (voda-methanol) roztok, Hg kapka, adsorptivní CV
ic -1, , , , , ,6 E,V

38 Delor 106, DMF, Hg-kapka

39 Aplikace organické-anorganické-biologické
ANALYTICKÉ stanovování koncentrací až do stopových koncentrací a mikroanalýza, vč. životního prostředí, typicky těžké kovy, redukce-oxidace schopné organické molekuly (aromáty, nitrolátky, halogeny…, fenoly, aminy…., base nukleových kyselin, biomolekuly až do nukleových kyselin, monitorování FYZIKÁLNĚ CHEMICKÉ rovnováhy, kinetika, interakce v roztoku, mechanizmy reakcí, identifikace produktů a meziproduktů

40 Trendy ELEKTRODY nertuťové materiály elektrod monokrystaly kovů, uhlíku, použití polovodičů, opticky transparentní elektrody (ITO), přechod k mini-mikroelektrodám a elektrodovým polím …. senzorům, bioelektrochemie a využití v oblasti ochrany a tvorby ŽP, nanoelektrochemie … VYUŽITÍ PC hardware – sběr a uložení dat, ovládání přístroje, software – manipulace s daty (integrace, derivace, statistika …) KOMBINOVANÉ METODY in situ měření elektrochemické a neelektrochemické, nejčastěji spektroskopické

41 nemožnost – nevhodnost použití metod ex situ
KOMBINOVANÉ METODY hledání dodatečné informace prostřednictvím další potenciálově závislé veličiny možnost komplexního posouzení vlastností a/nebo reaktivity zúčastněných látek nemožnost – nevhodnost použití metod ex situ přímé optické studium fotoelektrochemie spektroelektrochemie elektrochemiluminiscence

42 „spektroelektrochemie“
Kombinované techniky současné měření CV a jinou neelektrochemickou metodou, typicky spektroskopie (UV/VIS, IR, Raman) „spektroelektrochemie“ ale i jiné optické metody i neoptické metody jako, EPR, Moesbauerova sp., metody s polarizovaným světlem – elipsometrie, hmotnostní spektroskopie … ale také fotoelektrochemie, elektrochemiluminiscence

43 „SPECTROELECTROCHEMISTRY“ 1980 - ISI Web of Knowledge
1. SKULLY JP, MCCREERY RL GLANCING INCIDENCE EXTERNAL REFLECTION SPECTROELECTROCHEMISTRY WITH A CONTINUUM SOURCE  ANALYTICAL CHEMISTRY 52 (12): Times Cited: 23 2. MAMANTOV G, NORVELL VE, KLATT L SPECTROELECTROCHEMISTRY IN MELTS - APPLICATIONS TO MOLTEN CHLOROALUMINATES  JOURNAL OF THE ELECTROCHEMICAL SOCIETY 127 (8): Times Cited: 15 3. TYSON JF, WEST TS ANALYTICAL ASPECTS OF ABSORPTION SPECTROELECTROCHEMISTRY AT A PLATINUM-ELECTRODE .2. QUANTITATIVE BASIS AND STUDY OF ORGANIC-COMPOUNDS  TALANTA 27 (4): Times Cited: 22                          4. POWELL LA, WIGHTMAN RM SPECTROELECTROCHEMISTRY OF RETINAL - ELECTRODIMERIZATION IN THE PRESENCE OF PROTON DONORS  JOURNAL OF ELECTROANALYTICAL CHEMISTRY 106 (1-2): Times Cited: 10

44 první monografický přehled
první publikace T. Kuwana, R. K. Darlington, and D. W.Leady, Anal. Chem., 36, 2023 (1964). první monografický přehled Spectroelectrochemistry at Optically Transparent Electrodes Theodor Kuwana in Electroanalytical Chemistry a Series of Advances (Ed. Allen J. Bard), Vol. 7, Marcel Dekker, Inc., New York 1974

45 Typické uspořádání UV/VIS spektroelektrochemického experimentu
Typické uspořádání UV/VIS spektroelektrochemického experimentu. Vlevo s mikrosíťkou, vpravo s ITO naneseným na stěnu nádobky.

46 Křivky optické propustnosti (UV/VIS spektra) indiumoxidové elektrody (ITO), Pt a Au mikro-sítěk.

47 IJ Cambria Scientific Ltd.

48 Avantes s CCD detektorem

49 Kombinace EC a FTIR

50 kombinace EC-EPR-UV/VIS/NIR
A – laminovaná pracovní elektroda z platinové síťky, B – stříbrný drát jako ref. el. C – platinový drát – protielektroda D – Teflonová trubka E - standard 1-9: potenciostat, spektrometry, termostat…

51 3-D diagramy – PC vlnová délka-absorbance-potenciál
int. mg.pole-intenzita signálu-potenciál

52 Přímé optické studium obvykle monochromatické světlo – laser
interferometrie, použití polarizovaného světla - elipsometrie STM - Scanning Tunneling Microscopy rodina

53 EC + STM skupina skenovacích elektroskopických mikroskopických metod (SECM, EC SPM, EC STM, EC AFM …

54 Array of 10 x 10 Cu clusters at Esample = +10 mV vs. Cu/Cu2+.
Nanoelektrochemie                                               Array of 10 x 10 Cu clusters at Esample = +10 mV vs. Cu/Cu2+.                                               The same surface area after complete dissolution of the clusters at Esample = +300 mV.

55 Přímé optické studium elektrodového rozhraní
morfologie povrchu pevné elektrody, složení a vlastnosti fázového rozhraní elektroda/roztok, koncentrační změny, vč. např. vlastností naadsorbované vrstvy molekul – orientace, nejčastěji vnitřní část dvojvrstvy, tj. cca Å rozložení elektrického potenciálu… je možné použít kapacitní měření, avšak přímé optické sledování umožňuji vyhnout se použití „poruchy“, tudíž měřit v rovnovážném stavu

56 Ellipsometry prof. Vašíček, doc. Lukeš
sleduje se (obvykle) potenciálově závislá změna stavu elipticky polarizovaného světla, používá se monochromatické záření – Na-výbojka (589,3 nm, žlutá), Hg-výbojka (546,1 nm, zelená), laser, např. He-Ne (632,8 nm, červená) …

57 Elipticky polarizované světlo lineárně – kruhově p. sv.
popis chování paprsku světla pomocí elmg. vlny - elektrického a magnetického vektoru, pro další popis je dostačující elektrický vektor (jsou ortogonální) paprsek lineárně polarizovaného světla = výslednici po složení dvou paprsků opačně kruhově polarizovaného světla

58 pohled proti směru postupu paprsku
nl a nr jsou indexy lomu pro levotočivý a pravotočivý paprsek při zpoždění paprsku l oproti paprsku r = stočení roviny lineárně polarizovaného světla

59 Optický index lomu prostředí
je komplexní veličina Pozn. podobně i dielektrická konstanta e k souvisí s absorpcí elektrického vektoru v rozhraní

60 zlato vlnová délka reálná část indexu lomu imag. část indexu lomu
589,3 0,37 2,82 632,8 0.2 3.5 Pt oxidové filmy Au oxidové filmy Pd oxidové filmy

61 Vícenásobný lom

62 Elipticky polarizované světlo
dojde-li při průchodu paprsku rozhraním ke zpoždění k rozdílné absorpci paprsku l a r, po složení různě absorbovaných vektorů se lineárně polarizované světlo změní na elipticky polarizované popis: fyzikální parametry azimut j (souvisí s poměrem amplitud obou vln r a l) rozdíl fází D, souvisí s fázovým posunem obou vln geometrické parametry orientace elipsy a excentricita q, g > navzájem lze přepočítat z nich lze „určit“ optické konstanty n, k, d

63 Možné uspořádání elipsometru

64 Ellipsometr Gaertner L119

65 Applied Materials, Inc

66 spektroelektrochemie EC – optická absorpční spektroskopie
nejčastěji IR, UV/VIS ale i velmi odlišné energetické obsahy použitého záření (EPR, NMR, Mösbauer) a na druhou stranu energií X-ray reflektanční spektrometrie, elektroreflektance IRS – Internal Reflection Spectroscopy SRS - Specular Reflection Spectroscopy pro elektronová spektra DA ~ 10-1 – 10-6, v závislosti na molární absorptivitě – proto metoda vícenásobného odrazu nebo průchod paprsku paralelně s povrchem elektrody

67 Fotoelektrochemie elektrochemické sledování fotochemicky generovaných radikálů v nevodném prostředí na OTE (ITO, zlatá síťka, napařený Au transparentní film na křemenném substrátu

68 Fotomodulační aparatura

69 Fotoelektrochemická cela
Figure 3. Scheme of photoelectrochemical cell(1. aluminium cap, 2. fibber sealing, 3. glass or quartz plate(window), 4. O-ring, 5. Teflon body of the cell, 6, 7 and 8. holes for mounting of the electrodes(sealed by synthetic paraffin), 9, 10. inlet and outlet of working solution. Scheme of photoelectrochemical cell(1. aluminium cap, 2. fibber sealing, 3. glass or quartz plate(window), 4. O-ring, 5. Teflon body of the cell, 6, 7 and 8. holes for mounting of the electrodes(sealed by synthetic paraffin), 9, 10. inlet and outlet of working solution.

70 PHCV curves of 1M solution of diphenylmetan at v=10 mV s-1, RC=3s, sens. of lock-in amplifier 200 mV, phase angle f=1800, gold mesh, 10 vol.% of di-t-butylperoxide

71 EC – hmotnostní spektroskopie
Diferenciální elektrochemická hmotnostní spektroskopie - DEMS Je kombinovaná experimentální technika spojující on-line elektrochemickou nádobku a hmotnostní detektor – kvadrupól Spojením - obvykle – elektrochemického měření metodou voltametrie s lineárním skenem, resp.cyklické voltametrie s hmotnostním spektrometrem, získáváme mimo elektrochemického proudu jako funkce času, resp. potenciálu pracovní elektrody, ještě soubor iontových proudů IM hmotnostního spektrometru, ve stejné časové, resp. potenciálové doméně. Vedle IF-t a IF-E lze konstruovat IM-t a IM-E křivky CV křivky MSCV křivky

72 Schéma měřící aparatury
3 Schéma elektrochemické nádobky Schéma měřící aparatury WE-pracovní elektroda RE- referenční elektroda CE- pomocná elektroda pracovní elektroda Pt (polykrystalická) Teflon Membrána GORE-TEX tloušťka d=75 mm průměr pórů 0,02 mm plocha elektrody 0,28 cm2 objem nádobky 2l elektrochemická nádobka nerez V SIM (Single Ion Monitoring) modu lze zaznamenávat IM až 32 hodnot m/z k hmotnostnímu spektrometru

73 Typické CV a MSCV křivky chlorbenzen, nas
Typické CV a MSCV křivky chlorbenzen, nas. roztok v 0,5 M H2SO4, polykrystalická Pt elektroda (celkem bylo zjištěno 35 potenciálově závislých iontových proudů – IM) oxidace hydrogenace tři oblasti potenciálů v nichž se nalézají charakteristické změny MSCV křivek CV křivky ZE (křivka a) a typická CV křivka nasyceného roztoku chlorbenzenu (b), vyjadřující průběh elektrochemické oxidace-redukce (hydrogenace).

74 Electrochemical series
1.   Modern aspects of electrochemistry 1-30, J. Bocris (Ed.), Plenum Press, 1996. 2.   Advances in electrochemistry and electrochemical engineering 1-13, H. Gerischer, Ch. W. Tobias (Eds.), Wiley, NY, 1984. 3.   Comprehensive treatise of electrochemistry 1-10, B. E. Conway, J. Bocris (Eds.), 4.   Electroanalytical chemistry 1-19, A. J. Bard (Ed.), Dekker NY, Basel 1996.

75 Knihy 1.   A. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, Wiley, NY   R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson, (Southampton Electrochemistry Group), Instrumental methods in electrochemistry, Ellis Horwood Limited, Chichester   Z. Galus,Fundamentals of Electrochemicl analysis, Ellis Horwood Limited, Chichestr and Polish Scient. Publ. PWN, Warsawa   O. Fischer, E. Fischerova, Basic principles of voltammetry in Experimental techniques in biochemistry Vol.3, V. Brabec, D. Walz, G. Milazzo (Eds.), Birkhause Verlag, 1996 Basel.

76 Historie elektrochemie Vydavatelství časopisů
Internet Historie elektrochemie Odborné společnosti The American Chemical Society The Royal Society of Chemistry Vydavatelství časopisů Elsevier Wiley Dekker, Academic Press Plenum Press, Blackwell Science Ltd. Springer Verlag Kluwer

77 Elektrochemicky orientované odborné časopisy
Journal of Electroanalytical Chemistry Journal of Bioelectrochemical Chemistry Electrochemica Acta Journal of Electrochemical Society Journal of Applied Electrochemistry Transactions of Faraday Society Journal of American Chemical Society Analytical Chemistry Journal of Physical Chemistry Zeitschrift für Physikalische Chemie Discussions of Faraday Society Collection of Czechoslovak Chemical Society Surface Science

78 Zkratky a označení některých elektrochemických a kombinovaných technik
DC normal polarography AC, ACV alternating current polarography, voltammetry NPP, NPV normal pulse polarography, voltammetry DPP, DPV differential pulse polarography, voltammetry FS DPP, DPV fast scan .... SW square wave polarography CV cyclic voltammetry LSV linear sweep voltammetry chronoamperometry chronocoulometry chronopotentiometry RDE rotatinge disc electrode RDDE rotating ring-disc electrode OTE optically transparent electrodes OTTLE optically transparent thin layer electrode

79 a další… Spectroelectrochemistry, Ellipsometry, Specular reflectance method, Vibrational spectroscopy, IR spectroscopy, Internal reflectance spectroscopy, Raman scattering, Surface enhanced Raman spectroscopy, Electron spin (paramagnetic) spectroscopy, Photoelectrochemistry, Photocurrent spectroscopy, Mossbauer spectroscopy, Mass spectroscopy, Auger electron spectroscopy, In situ X-ray diffraction ( Low energy electron diffraction), X-ray photoelectron spectroscopy (Electron spectroscopy for chemical analysis - ESCA), Electrochemiluminiscence

80 Děkuji za pozornost


Stáhnout ppt "Aplikace elektroanalytických metod"

Podobné prezentace


Reklamy Google