Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Základní pojmy, principy a zákony Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, 2010 Téma 1 Cvičení.

Podobné prezentace


Prezentace na téma: "Základní pojmy, principy a zákony Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, 2010 Téma 1 Cvičení."— Transkript prezentace:

1 Základní pojmy, principy a zákony Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, Téma 1 Cvičení

2 Obsah. 1.Vzácnost a užitečnost. 2.Princip nákladů obětované příležitosti a hranice produkčních možností 3.Princip utopených nákladů 4.Efektivnost 5.Paretovské optimum (Pareto-optimality) 6.Konkurence a inovace 7.Mezní (přírůstkové) veličiny 8.Zákon klesajících mezních výnosů a zákon klesajícího mezního užitku 1.Vzácnost a užitečnost. 2.Princip nákladů obětované příležitosti a hranice produkčních možností 3.Princip utopených nákladů 4.Efektivnost 5.Paretovské optimum (Pareto-optimality) 6.Konkurence a inovace 7.Mezní (přírůstkové) veličiny 8.Zákon klesajících mezních výnosů a zákon klesajícího mezního užitku

3 Vymezení mikroekonomie Mikroekonomie je věda, která se zabývá hledáním a výběrem optimálních variant výroby a spotřeby vzácných a užitečných statků. Je to věda, která studuje, jak lidé využívají vzácné zdroje k uspokojování svých potřeb, přičemž tyto potřeby uspokojují pomocí produkovaných statků. Je to věda, která studuje, jak lidé využívají vzácné zdroje k uspokojování svých potřeb, přičemž tyto potřeby uspokojují pomocí produkovaných statků. Zabývá se též rozdělováním těchto statků mezi členy společnosti. Zabývá se též rozdělováním těchto statků mezi členy společnosti.

4 Racionalita chování Mikroekonomie se zabývá chováním racionálního člověka, tedy člověka, který volí statky, jež mu z jeho subjektivního pohledu přinášejí největší užitek Mikroekonomie se zabývá chováním racionálního člověka, tedy člověka, který volí statky, jež mu z jeho subjektivního pohledu přinášejí největší užitek

5 Racionální chování vynechat dojmový postup,vynechat dojmový postup, zapojit pokud možno kalkulativní, exaktní, rozhodování podložené měřením a výpočty,zapojit pokud možno kalkulativní, exaktní, rozhodování podložené měřením a výpočty, neplýtvat energií,neplýtvat energií, preferovat efektivní postupy a zbytečně nemeandrovat.preferovat efektivní postupy a zbytečně nemeandrovat.

6 Racionální ekonomické chování více peněz je lepší než méně peněz,více peněz je lepší než méně peněz, peníze dřív jsou lepší než peníze později,peníze dřív jsou lepší než peníze později, menší riziko je lepší než větší riziko,menší riziko je lepší než větší riziko,

7 Otázky a příklady kap.1, str.34 1.Uveďte příklad statku, který je vzácný, nikoli však užitečný. 2. Uveďte příklad statku, který je užitečný, nikoli však vzácný. (Takové statky nazýváme volnými.) 3. Může se stát volný statek za určitých podmínek či okolností vzácným statkem? Uveďte příklady.

8 Otázky a příklady kap.1, str.34 1.Uveďte příklad statku, který je vzácný, nikoli však užitečný. Vrak Titaniku; nefunkční kosmická sonda, … Vrak Titaniku; nefunkční kosmická sonda, … 2. Uveďte příklad statku, který je užitečný, nikoli však vzácný. (Takové statky nazýváme volnými.) Voda říční, dešťová, vzduch, oblázky, písek, … Voda říční, dešťová, vzduch, oblázky, písek, … 3.Může se stát volný statek za určitých podmínek či okolností vzácným statkem? Uveďte příklady. Statky jsou užitečné, protože umožňují uspokojení potřeb. Statky jsou užitečné, protože umožňují uspokojení potřeb. Pitná voda, voda po vzniku pouště, pobyt v lese Pitná voda, voda po vzniku pouště, pobyt v lese

9 Otázky a příklady Volný statek: Co je volný statek? a)pitná voda b)čistý vzduch ve městě c)silnice a dálnice d)vzduch v poušti e)vše uvedené

10 Otázky a příklady Volný statek: Co je volný statek? a)pitná voda b)čistý vzduch ve městě c)silnice a dálnice d)vzduch v poušti e)vše uvedené

11 Otázky a příklady kap.1, str Které z následujících statků jsou vzácné a které nikoli: brambory, zlato, vzduch, měsíční hornina, schopnost řídit auto, říční voda. 5. Lze vyrobit, směnit, užívat statky, které nejsou a)vzácné, b)užitečné

12 Otázky a příklady kap.1, str Které z následujících statků jsou vzácné a které nikoli: brambory, zlato, vzduch, měsíční hornina, schopnost řídit auto, říční voda. Vzácné: zlato; měsíční hornina ; Nevzácné: brambory, vzduch, schopnost řídit auto, říční voda 5. Lze vyrobit, směnit, užívat statky, které nejsou a) vzácné, NE !! b) užitečné NE !!

13 Princip nákladů obětované příležitosti Pokud realizujeme optimální variantu jsou Pokud realizujeme optimální variantu jsou náklady obětované příležitosti menší než užitek ze zrealizované alternativy! náklady obětované příležitosti menší než užitek ze zrealizované alternativy!

14 Princip nákladů obětované příležitosti Ztráta vzhledem k optimu Ztráta oběť

15 Otázky a příklady kap.1, str.34 Student VŠ dostává stipendium PJ. Kdyby nestudoval a byl zaměstnán jako marketingový agent mohl by vydělávat PJ. Určete alternativní náklady jeho studia: a)2 000 PJ, b) PJ, c) PJ d) PJ.

16 Otázky a příklady kap.1, str.34 Student VŠ dostává stipendium PJ. Kdyby nestudoval a byl zaměstnán jako marketingový agent mohl by vydělávat PJ. Určete alternativní náklady jeho studia: a)2 000 PJ, b) PJ, c) PJ d) PJ.

17 Otázky a příklady kap.1, str.34 Jiří investoval do bytu částku 2 mil. PJ. Nyní platí pouze vodu, elektřinu a teplo. Ve městě, kde má Jiří byt, činí tržní nájem PJ měsíčně. Jaké jsou jeho náklady obětované příležitosti z bydlení ve vlastním bytě?

18 Otázky a příklady kap.1, str.34 Jiří investoval do bytu částku 2 mil. PJ. Nyní platí pouze vodu, elektřinu a teplo. Ve městě, kde má Jiří byt, činí tržní nájem PJ měsíčně. Jaké jsou jeho náklady obětované příležitosti z bydlení ve vlastním bytě? Jeho náklady obětované příležitosti jsou PJ.

19 Otázky a příklady kap.1, str.34 Aleš má byt, ve kterém nebydlí. Měsíční náklady, které za byt, činí PJ. Kdyby byt pronajal, získal by měsíčně částku PJ. Jaké jsou Alešovy náklady obětované příležitosti, když byt nepronajímá? Kolik by při pronájmu bytu vydělal?

20 Otázky a příklady kap.1, str.34 Aleš má byt, ve kterém nebydlí. Měsíční náklady, které za byt platí, činí PJ. Kdyby byt pronajal, získal by měsíčně částku PJ. Jaké jsou Alešovy náklady obětované příležitosti, když byt nepronajímá? Kolik by při pronájmu bytu vydělal? Náklady obětované příležitosti jsou PJ. Vydělal by = 7000 PJ

21 Hranice produkčních možnostíPPF Hranice produkčních možností PPF je maximální možná kombinace všech statků, které v daném systému (firmě, území, ČR…) lze se všemi zdroji, jež máme aktuálně k dispozici, vyprodukovat. je maximální možná kombinace všech statků, které v daném systému (firmě, území, ČR…) lze se všemi zdroji, jež máme aktuálně k dispozici, vyprodukovat. Pokud se zvyšuje množství všech statků, které můžeme s danými zdroji vyprodukovat, tak, aniž bychom museli snížit produkci některého statku, posouvá se i hranice produkčních možností.

22 Otázky a příklady kap.1, str.34; př. 9 Nakreslete hranici produkčních možností pro firmu, která může maximálně vyprodukovat následující jednotlivá maximální množství statků Q´ 1 a Q´ 2 – první číslo v závorce vždy udává množství statku Q´ 1, druhé číslo udává množství statku Q´ 2 : (1, 20), (2, 18), (3, 15), (4, 11), (5, 6), (6, 0).

23 Hranice produkčních možností PPF Př. 9/1.kap. ´1

24 Otázky a příklady kap.1, str.34; př. 10 Na základě hodnot uvedených v příkladu číslo 9 nakreslete libovolnou hranici produkčních možností pro tuto firmu a)pokud díky technologické inovaci může zvýšit produkci obou statků, b)pokud v důsledku požáru musí snížit produkci obou statků.

25 Hranice produkčních možností PPF Př. 10/1.kap.

26 Hranice produkčních možnostíPPF Hranice produkčních možností PPF

27

28

29 Hranice produkčních možností PPF

30 Hranice produkčních možností PPF Meze Q´ 2 ? pro Q´ 1 =25 Máte-li zadané krajní body PPF, v jakém intervalu budou hodnoty pro Q´ 1 =25

31 Hranice produkčních možností PPF Meze Q´ 2 ? pro Q´ 2 =25 Q´ 1 Q´

32 Hranice produkčních možností PPF Meze Q´ 2 ? pro Q´ 1 =25 Q´ 1 Q´

33 Otázky a příklady kap.1, str.34; př.11 Koupili jste si vstupenku do divadla v hodnotě 200 PJ. V peněžence máte rovněž bankovku v hodnotě 200 PJ. Před vchodem do divadla ale zjistíte, že jste vstupenku ztratili. Půjdete do divadla? (Předpokládáme, že je možno si koupit jinou vstupenku za 200 PJ).

34 Otázky a příklady kap.1, str.34; př.11 Koupili jste si vstupenku do divadla v hodnotě 200 PJ. V peněžence máte rovněž bankovku v hodnotě 200 PJ. Před vchodem do divadla ale zjistíte, že jste vstupenku ztratili. Půjdete do divadla? (Předpokládáme, že je možno si koupit jinou vstupenku za 200 PJ). ANO koupím novou. Ztracená vstupenka je utopený náklad;

35 Otázky a příklady kap.1, str.34; př.11 Koupili jste si vstupenku do divadla v hodnotě 200 PJ. V peněžence máte rovněž bankovku v hodnotě 200 PJ. Před vchodem do divadla ale zjistíte, že jste bankovku vytratili. Půjdete do divadla?

36 Otázky a příklady kap.1, str.34; př.11 Koupili jste si vstupenku do divadla v hodnotě 200 PJ. V peněžence máte rovněž bankovku v hodnotě 200 PJ. Před vchodem do divadla ale zjistíte, že jste bankovku vytratili. Půjdete do divadla? ANO. Ztracená bankovka je utopený náklad;

37 Otázky a příklady kap.1, str.34; př.12 Vaše košile byla ušpiněna inkoustem, který nejde vyprat. Čím jsou pro vás náklady na zakoupení košile?

38 Otázky a příklady kap.1, str.34; př.12 Vaše košile byla ušpiněna inkoustem, který nejde vyprat. Čím jsou pro vás náklady na zakoupení košile? Utopený náklad. Utopený náklad.

39 Otázky a příklady kap.1, str.34; př.13 Paní Nováková si koupila 10 jízd na lyžařském vleku. Když sjela 7 jízd, začalo silně pršet. Přestože je pro ni lyžování v dešti nepříjemné, rozhodla se, že zbylé jízdy pojede, když už za ně zaplatila peníze. Je její chování racionální?

40 Otázky a příklady kap.1, str.34; př.13 Paní Nováková si koupila 10 jízd na lyžařském vleku. Když sjela 7 jízd, začalo silně pršet. Přestože je pro ni lyžování v dešti nepříjemné, rozhodla se, že zbylé jízdy pojede, když už za ně zaplatila peníze. Je její chování racionální? Moc ne, lépe, kdyby to považovala za utopený náklad.

41 Otázky a příklady kap.1, str.34; př.14 Jak lze definovat pojem efektivnost? Co si představíte pod efektivní činností? Jak se liší efektivnost od ziskovosti či rentability.

42 Efektivnost Chceme-li vyprodukovat nějaký výstup, musíme k tomu použít nějaké vstupy. Chceme-li vyprodukovat nějaký výstup, musíme k tomu použít nějaké vstupy. Většina výstupů má podobu statků, tj. zboží a služeb, které uspokojují naše potřeby. Někdy je výstupem přímo uspokojení potřeby – např. když si čteme knihu, tak je výstupem uspokojení (užitek) z této četby. Výstupem mohou být také výrobní prostředky, které budou sloužit k výrobě jiných statků.

43 Efektivnost Přeměna vstupů na výstupy se děje v nějaké černé schránce. Vstupy jsou výrobní faktory (VF). Standardními VF jsou půda, práce a kapitálové statky. Změna množství těchto faktorů při jejich nezměněné kvalitě představuje extenzivní faktor. Standardními VF jsou půda, práce a kapitálové statky. Změna množství těchto faktorů při jejich nezměněné kvalitě představuje extenzivní faktor. Za vstupy mohou být považovány také intenzivní faktory jako jsou znalosti, schopností, dovednosti, zlepšení organizace, managementu apod. Za vstupy mohou být považovány také intenzivní faktory jako jsou znalosti, schopností, dovednosti, zlepšení organizace, managementu apod.

44 Efektivnost Veličina vyjadřující množství výstupů z jednoho vstupu je efektivnost. Efektivnost můžeme vyjádřit jako poměr mezi celkovým výstupem a celkovým vstupem. Takové vyjádření je velmi názorné pokud dokážeme všechny vstupy agregovat do jediného celkového vstupu tzv. souhrnný input vstupních faktorů SIF. Takové vyjádření je velmi názorné pokud dokážeme všechny vstupy agregovat do jediného celkového vstupu tzv. souhrnný input vstupních faktorů SIF.

45 Efektivnost Vstupy a výstupy je potřeba nějak ocenit. Nejjednodušším způsobem je přiřadit vstupu či výstupu cenu, za kterou jej lze prodat či koupit. Ocenit lze i nehmotné vstupy a výstupy. Vstupy a výstupy je potřeba nějak ocenit. Nejjednodušším způsobem je přiřadit vstupu či výstupu cenu, za kterou jej lze prodat či koupit. Ocenit lze i nehmotné vstupy a výstupy. Při peněžním ocenění mají vstupy podobu nákladů, výstupy podobu výnosů, respektive příjmů. Při peněžním ocenění mají vstupy podobu nákladů, výstupy podobu výnosů, respektive příjmů. Při peněžním ocenění je potom rozdíl mezi výnosy a náklady ziskem či ztrátou. Jejich podíl je efektivnost.

46 Efektivnost Pro podnikatele je výstupem celkový příjem TR (tržba) a vstupem jsou celkové náklady TC. Rozdíl obou veličin je zisk EP, pro který podniká EP = TR - TC EP = TR - TC Podíl obou veličin je efektivnost Ef = TR / TC TC FC VC TR

47 Změnila se efektivnost? Př. 14/1.kap.

48 Efektivnost vzroste na dvojnásobek Ef e = 2.TR 0 /2.TC 0 = Ef 0 Ef 0 = TR 0 /TC 0 Ef i = 2.TR 0 /TC 0 =2.Ef 0 EP 0 = TR 0 -TC 0 EP e = 2.TR 0 -2.TC 0 = 2.EP 0 EP i = 2.TR 0 -TC 0 = 2.EP 0 +TC 0 EP i = EP e +TC 0

49 Změnila se efektivnost? Př. 14/1.kap. TR TR=4 TC=2 EP=2 TR=8 TC=4 EP=4 TR=8 TC=2 EP=6

50 Otázky a příklady kap.1, str.34; př.15 Náklady na určitou aktivitu činí 100 PJ, příjmy z této aktivity jsou 80 PJ. Je tato aktivita efektivní?

51 Otázky a příklady kap.1, str.34; př.15 Náklady na určitou aktivitu činí 100 PJ, příjmy z této aktivity jsou 80 PJ. Je tato aktivita efektivní? Nikoliv! Je ztrátová! Ztráta činí 20 PJ. Zisk je -20 PJ. Efektivnost je menší než 1. Ef = 0,8.

52 Otázky a příklady kap.1, str.34; př.16 Stát zdanil pana Borůvku, který je bohatý, a peníze poskytl na vzdělání dětí pana Jahody – pan Jahoda je chudý. Je tento postup efektivní? Proč ano, proč ne? A je tento postup paretovsky efektivní?

53 Otázky a příklady kap.1, str.34; př.16 Stát zdanil pana Borůvku, který je bohatý, a peníze poskytl na vzdělání dětí pana Jahody – pan Jahoda je chudý. Je tento postup efektivní? Proč ano, proč ne? Částečná demotivace. Podpora vzdělání na optimální povolání je žádoucí. Částečná demotivace. Podpora vzdělání na optimální povolání je žádoucí. A je tento postup paretovsky efektivní? Ne

54 Otázky a příklady kap.1, str.34; př.17 Uveďte příklady postupů, které zvyšují užitek všech členů dané společnosti (např. rodiny, firmy, obce…).

55 Otázky a příklady kap.1, str.34; př.17 Uveďte příklady postupů, které zvyšují užitek všech členů dané společnosti (např. rodiny, firmy, obce…). Čistota, pořádek, bezpečnost, dobrá organizace práce …

56 Otázky a příklady kap.1, str.34; př.18 Uveďte příklady inovací, se kterými se setkáváte ve svém životě. Které inovace pokládáte za nejvíce podstatné z hlediska vývoje lidstva?

57 Otázky a příklady kap.1, str.34; př.18 Uveďte příklady inovací, se kterými se setkáváte ve svém životě. Nové automobily, tramvaje, vlaky, telefon, …. Které inovace pokládáte za nejvíce podstatné z hlediska vývoje lidstva? Oheň, písmo, kolo, motor, elektronika, informační technologie,...

58 Otázky a příklady kap.1, str.34; př.19 Uveďte příklady konkurence, se kterými se setkáváte ve svém životě. Proč konkurence pomáhá zlepšovat lidský život? Proč konkurence pomáhá zlepšovat lidský život?

59 Otázky a příklady kap.1, str.34; př.19 Uveďte příklady konkurence, se kterými se setkáváte ve svém životě. Nakupování v Káthmándú, boty, benzín ….. Proč konkurence pomáhá zlepšovat lidský život? Proč konkurence pomáhá zlepšovat lidský život? Nutí producenty držet rozumnou cenu …

60 Otázky a příklady kap.1, str.34; př.20 Mějme následující tabulku, která udává, kolik statků celkem vyprodukuje uvedený počet dělníků. Spočítejte mezní výnos (MQ´) každého dělníka.

61 Vývoj celkového a mezního produktu Př. 20/1.kap Q(L)TQ´MT´

62 Otázky a příklady kap.1, str.34; př.21 Jaký je vztah mezi celkovým a mezním užitkem, celkovými a mezními náklady, celkovými a mezními příjmy?

63 Otázky a příklady kap.1, str.34; př.21 Jaký je vztah mezi celkovým a mezním užitkem, celkovými a mezními náklady, celkovými a mezními příjmy? Statická úloha. Dynamická úloha. Mezní je přírůstkový (též derivace) Δ(); I(); G()

64 Otázky a příklady kap.1, str.34; př.22 Napadají vás další celkové a mezní veličiny, se kterými se v ekonomii lze setkat?

65 Otázky a příklady kap.1, str.34; př.23 Zdůvodněte, proč platí: a)zákon klesajících mezních výnosů, b)zákon klesajícího mezního užitku.

66 Otázky a příklady kap.1, str.34; př.23 Zdůvodněte, proč platí: a)zákon klesajících mezních výnosů, b)zákon klesajícího mezního užitku. -Platí, že nejprve používáme ty nejvíce produktivní jednotky vstupu. -Dříve nebo později narazíme na bariéry v podobě omezeného množství ostatních vstupů.

67 Otázky a příklady kap.1, str.34; př.24 Na základě hodnot uvedených v příkladu číslo 20 graficky znázorněte vývoj celkového produktu a mezního produktu.

68 Vývoj celkového a mezního produktu Př. 24/1.kap Q(L)TQ´MT´

69 Vývoj celkového a mezního produktu Př. 24/1.kap Q(L)TQ´MT´

70 Vývoj celkového a mezního produktu Př. 24/1.kap Q(L)TQ´MQ´

71 Nakreslete funkce 1)Lineární rostoucí y = F (x) = a + b.x a)a 0 2) Nelineární rostoucí y = F (x) a)konkávní b) konvexní c) s inflexním bodem 3) Nakreslete funkci a)konstanty b) periodickou c) neklesající 4) Nakreslete nějakou funkci a)sudou (x 2 ) b) lichou (x 3 ) c) y = │x│

72 Zákon klesajících mezních výnosů

73

74

75

76 Produkční funkce

77

78

79 Otázky a příklady kap.1, str.34; př.25 Předpokládejme, že zemědělec hnojí půdu stále větším množstvím hnojiva. Jaký bude pravděpodobně tvar křivky celkového produktu z půdy a mezního produktu z půdy? Zdůvodněte.

80 Rozlohy pozemků 30 ha 20 ha 10 ha Otázky a příklady kap.1, str.34; př.25

81 Účinnost výrobního faktoru

82 Účinnost hnojení ha pozemku

83

84

85 Farmářský alokační příklad Disponibilní množství vody E = E 0 = 30 hl

86 Farmářský alokační příklad

87

88 hl 10 hl 1 30 q 13 q 1,4.6= 8,4 q 1,7 1

89 Farmářský alokační příklad

90 Farmářská alokace

91

92 Farmářská alokace

93 Úrody … A+B; A; B A B A B A B A B A B A B

94 Farmářský alokační příklad

95 Výsledné rozdělení vody a úrod.

96 Farmářský alokační příklad

97

98 Děkuji za pozornost. Teoretický seminář VŠFS Jiří Mihola


Stáhnout ppt "Základní pojmy, principy a zákony Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, 2010 Téma 1 Cvičení."

Podobné prezentace


Reklamy Google