Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Teorie čísel Prvočíslo Eulerova funkce φ(n) První hodnoty funkce φ: 1,1,2,2,4,2,6,3,6,4 Pro a, b nesoudělná φ(ab)= φ(a). φ(b) P prvočíslo: φ(p)=p-1.

Podobné prezentace


Prezentace na téma: "Teorie čísel Prvočíslo Eulerova funkce φ(n) První hodnoty funkce φ: 1,1,2,2,4,2,6,3,6,4 Pro a, b nesoudělná φ(ab)= φ(a). φ(b) P prvočíslo: φ(p)=p-1."— Transkript prezentace:

1 Teorie čísel Prvočíslo Eulerova funkce φ(n) První hodnoty funkce φ: 1,1,2,2,4,2,6,3,6,4 Pro a, b nesoudělná φ(ab)= φ(a). φ(b) P prvočíslo: φ(p)=p-1

2 Vlastnosti prvočísel Binomický koeficient (p nad i) mod p = 0, pro i=1..p-1 (a+b) p mod p=a p +b p Pro c menší než p je c p mod p = c, c p-1 mod p = 1 N je součin dvou prvočísel p,q. φ(N)=(p-1)(q-1), c φ(N) mod N = 1 Malá Fermatova věta

3 Distribuce klíčů D-H *1976 Whitfield Diffie *1944 Martin Hellban *1945 Massachusetts Institute of Technology (Boston) Protokol SSL

4 Metoda Diffie Hellman Použiji jednosměrnou funkci f(x)=p x mod q p,q jsou velká prvočísla. Uživatel A zvolí tajný klíč t, uživatel B tajný klíč s. Uživatel A spočítá f(t) = p t mod q = α a pošle Uživatel B spočítá f(s) = p s mod q = β a pošle

5 Metoda Diffie Hellman A spočítá β t mod q = p st mod q = K. B spočítá α s mod q = p ts mod q = K. K se použije jako klíč pro jednorázovou šifru (např. DES)


Stáhnout ppt "Teorie čísel Prvočíslo Eulerova funkce φ(n) První hodnoty funkce φ: 1,1,2,2,4,2,6,3,6,4 Pro a, b nesoudělná φ(ab)= φ(a). φ(b) P prvočíslo: φ(p)=p-1."

Podobné prezentace


Reklamy Google