Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Rapid Prototyping. Historie V 80. letech minulého století byla vyvinuta 1.metoda RP = stereolitografie Cíl - vytvoření MODELU v krátkém čase a nejvyšší.

Podobné prezentace


Prezentace na téma: "Rapid Prototyping. Historie V 80. letech minulého století byla vyvinuta 1.metoda RP = stereolitografie Cíl - vytvoření MODELU v krátkém čase a nejvyšší."— Transkript prezentace:

1 Rapid Prototyping

2 Historie V 80. letech minulého století byla vyvinuta 1.metoda RP = stereolitografie Cíl - vytvoření MODELU v krátkém čase a nejvyšší kvalitě !!!

3 POUŽITÍ výroba modelů - Rapid Modeling výroba nástrojů a přípravků - Rapid Tooling kusová a malosériová výroba - Rapid Manufacturing

4 Výhody Rapid prototyping zrychlení vývoje výrobku snížení nákladů zlepšení kvality výroba jinak nevyrobitelných výrobků výroba náhradních dílů při letech do kosmu

5 RP umožňuje ověřit 1.funkci 2.design 3.ergonomii už v etapě vývoje

6 Použité materiály tekuté práškové polymerní papírové

7 RP podle výrobního postupu Vrstvy se přidávají s použitím laseru: a.s vytvrzováním bod po bodu b.s vytvrzováním po vrstvách Vrstvy se přidávají bez použití laseru a.s vytvrzováním bod po bodu b.s vytvrzováním po vrstvách

8 Stereolitografie

9 Princip metody 3D počítačový model se převede do příslušného formátu (nejčastěji STL) data se načtou do speciálního softwaru Rapid Prototyping virtuální (počítačový) model je rozřezán řezy s nastavením tloušťky jednotlivých vrstev navrhnou se podpory

10 Schéma streolitografie 1 – laser 2 - pracovní hlava laseru 3 - systém pro posuv nosné desky 4 - nosná deska 5 - pracovní vana 6 - CNC řídicí systém 7 – fotopolymer 8 – podložka 9 - vyráběná součást

11 Zařízení pro stereolitografii

12 Stereolitografie 1.technologie Rapid Prototyping Nejpřesnější výroba modelů, prototypů a složitých výrobků Aditivní způsob výroby zkracuje výrobní časy složitých modelů

13 Aditivní způsob výroby Adice = slučování, přidávání materiálu k vytvoření žádaného tvaru materiál neubíráme (jako např.u soustružení), ale naopak PŘIDÁVÁME!!! „obrábění naruby“

14 Příklady použití

15 Proces výroby 1.Vytvoření 3D počítačového modelu 2.Vytvoření pracovního STL programu 3.Vlastní stereolitografický proces 4.Vytvrzení výrobku v UV peci 5.Dokončovací operace

16 1. Vytvoření 3D modelu Model výrobku vytvoříme v 3D CAD/CAM systému Model získáme skenováním z počítačového tomografu CAT Model pomocí 3D měřících přístrojů

17 2.Vytvoření pracovního programu 3D model se ve formě souboru je přenesen do příslušného softwaru – stereolitografického programu program připraví model k vlastnímu procesu výroby – vytvoří pracovní program s příponou.STL celý model je „rozřezán" na stejné vrstvy tmin = 0,05 mm

18 3.Vlastní proces stereolitografie Laser generuje (vytváří) ultrafialový paprsek Laser vykresluje plochy jednotlivých vrstev, čímž se materiál vytvrzuje Pohyb laseru je řízen stereolitografickým programem Po „vytvrzení“ jedné vrstvy platforma klesá a proces se opakuje

19 4.Vytvrzení výrobku v UV peci Dojde k osušení a zpevnění výrobku

20 5.Dokončovací operace Povrchová úprava je možné aplikovat plnivo, barvivo vyleštit nebo otryskat povrch dosažené hodnoty: drsnost 1 až 2 µm Přesnost – setiny mm Přesnost 0,05-0,2mm/100mm

21 Použité materiály Fotopolymery - materiály reagující na světlo vytvrzením akrylátové nebo epoxidové pryskyřice

22 Použití stereolitografie Složité výrobky s vnitřními dutinami a složitými detaily modely pro slévárenství náhrada např. voskového modelu modely pro lékařství a letecký průmysl

23 Použité lasery argonový (Ar + ) heliumcadmiový (HeCd) pevnolátkový Nd:YAG laser

24 Nevýhody pomalé vytvrzování polymeru u některých materiálů malá tepelná odolnost

25 Části stereolitografického zařízení  Pracovní komora  Laserové zařízení  Řídící systém

26 Pracovní komora Je tvořena zdvihovým zařízením a nádobou na tekutý plast Nádoba obsahuje epoxidovou pryskyřici pohybuje se v ní platforma = základovová deska

27 Laserové zařízení generuje laserový paprsek, vykreslující rovinné řezy.Po dokončení řezu se zdvihové zařízení posune o předem definovaný posuv opticko-laserový systém je složen z plynového nebo pevnolátkového laseru, čoček a soustavy zrcadel, které slouží k usměrnění paprsku

28 Řídící systém Počítač je v řídící jednotce - řídí celý proces počítačový model je programem rozřezán na plátky a nahrán do stereolitografu software pracuje na multiplatformě PC Hawlet Packard, Silikon Graphics, kde dojde k rozmístění na pracovni plochu stereolitografu

29 Schéma stereolitografie

30 PODPORY Model musí zaujmout na platformě nejvhodněší polohu Nejvhodnější polohu zajistíme podporami Podpory musí být umístěny tak, aby se daly po celém procesu odstranit Po vytvrzení všech vrstev se model vyjme z podpor a následuje očištění a vytvrzení v UV komoře

31 Zarovnávací nůž Po každém vytvrzení jednotlivé vrstvy nůž zarovná hladinu pryskyřice, aby byla dosažena stejná tlouštka další vrstvy.

32 Použití stereolitografie Výroba složitých modelů k získání představy o celkovém provedení a tvaru ke kontrole designu navrhovaného objektu Možnost vybrat z konkurenčních návrhů ten nejlepší výroba forem a nástrojů k simulacím namáhání, proudění atd.

33 Příklady výrobků

34

35

36 Sintering

37 Schéma sinteringu

38 schéma

39 Schéma zařízení sinteringu 1 – laser 2 – zrcadlo 3 - válec pro dopravu prášku materiálu obrobku 4 - zásobník prášku 5 - pracovní komora 6 - vyráběná součást

40 Selective Laser Sintering(SLS) Modely jsou velmi pevné Využívá spékání prášku pomocí CO 2 laseru Prášek je nanášen po vrstvách na nosnou desku v inertní atmosféře (dusík nebo argon)

41 Princip laserem se materiál speče nebo roztaví a ztuhne okolní = neosvícený materiál tvoří nosnou konstrukci = podporu vyrábí se po vrstvách po vytvoření jedné vrstvy se nosná deska sníží od 0,02 mm do několika desetin milimetru

42 Použité materiály jakýkoliv prášek, který se působením tepla taví nebo měkne termoplasty - polyamidy, polyamidy plněné skelnými vlákny, polykarbonáty, polystyreny speciální nízkotavitelné slitiny z niklových bronzů ocelové prášky

43 Druhy SLS 1.Laser - Sintering Plastic 2.Laser - Sintering Metal 3.Laser - Sintering Formsand 4.Laser - Sintering Ceramic 5.Laser Micro Sintering 6.3-D Laser Cladding

44 1.Laser - Sintering Plastic při metodě lití místo „ztraceného vosku“ použijeme polystyren Nylonové součásti - vynikající mechanické vlastnosti - tvrdost, houževnatost, teplotní odolnost Modely vhodné pro funkční zkoušky nebo testy stupně lícování

45 2. Laser - Sintering Metal používají se speciálně vyvinuté kovové prášky. Součásti jsou pevné a mechanicky odolné formy pro plastové výlisky - vstřikováním nebo lisováním

46 3.Laser - Sintering Formsand speciálně upravený slévárenský písek jeho vytvrzováním vytvoříme klasickou pískovou formu pro lití

47 4.Laser - Sintering Ceramic Používá keramický prášek spojovaný pomocí tekutého pojiva Pojivo se nanáší Ink-Jet tryskovou hlavou Vyrábí se formy a jádra pro přesné lití

48 5.Laser Micro Sintering Používá wolframový prášek Pro spékání prášku používá Nd:YAG laser Součást tvoří vrstvy o tloušťce 0,03 mm kvalita povrchu méně než Ra 1,5 μm

49 3-D Laser Cladding tavení kovového prášku laserem povlakování v inertního atmosféře výroba součástí letadel titanové, niklové, kobaltové a hliníkové slitiny náhrady kyčelních kloubů - prášekTi6Al4V

50 Výrobní zařízení Skládá se ze: 1.zásobníku prášku - pomocí zvedacího pístu a válce je prášek dopraven k místu vytvrzení 2.Optické soustavy - laser přes optickou soustavu vytvrdí určitou plochu, poté se o tlouštku vrstvy posune základna dolů a proces pokračuje 3.Základna = platforma – je na ní umístěn výrobek

51 Model = výrobek Model je umístěn v nevytvrzeném prášku není zapotřebí podpor Po vytvrzení musí prášek vychladnout, Z důvodu ochrany jakosti povrchu je komora naplněna inertním plynem (dusíkem)

52 Laminated Manufacturing

53 Laminated Object Manufacture (LOM) Metoda založena na vrstvení lepivého materiálu Součást je vytvářena ze speciálních plastových fólií nebo z mnoha vrstev papíru napuštěných zpevňující hmotou Jednotlivé vrstvy jsou oříznuty do správného tvaru CO 2 laserem

54 Vlastnosti výrobků jako dřevěné ruční opracování pro hladký vhodné pro velkých součástí nevýhodou – velký odpad

55 Schéma LOM 1 – laser 2 – zrcadlo 3 – role fólie 4 – nosná deska 5 – vyhřívané přítlačné válce

56 LOM – Vrstvení lepivého materiálu vrstvení fólie(papír) a lepící hmoty(PE) materiál je odvíjen na nosnou desku laser vytvoří požadovaný tvar tlakem vyhřívaného válec se vrstvy spojí zbytek fólie se navine válec nosná deska klesá a proces se opakuje

57

58 Fused Deposition Modelling

59 princip 3D tiskárny

60 Schéma zařízení pro FDM 1 – tryska 2 – systém podávání drátu 3 – zásobník drátu 4 – obrobek 5 – nosná deska 6 – pracovní komora

61 Fused Deposition Modeling Nanášení vlákna termoplastu tavením nepoužívá laser! Součást se tvoří nanášením vrstev z termoplastů (polyamid,polyetylen)nebo vosků součást nevyžaduje žádné obrábění FDM pracuje většina 3D tiskáren

62 PRINCIP vlákno vychází z vyhřívané trysky Ohřev je o 1 °C vyšší, než teplota tavení Vlákna se spojují a vytvářejí ultratenkou vrstvu - hned tuhne nosná deska s plastem se po nanesení vrstvy sníží Na přečnívajících částech je nutné vytvořit podpory z lepenky nebo polystyrenu

63 Příklady výrobků – FDM

64

65 Schéma 3D tiskárny

66 Firma Bibus Brno – 3D tisk

67 3D tiskárny

68 postup

69 Popis stroje

70 Výhody FDM nehlučný provoz umístění v kanceláři funkční modely minimální odpad podpory jen „vylomíme“

71 Nevýhody FDM Omezená přesnost Pomalý proces Možnost smrštění modelu

72 Vytvrzování UV lampou

73 Princip SGC Ground Curing SGC vytvrzování fotocitlivého tekutého polymeru celá vrstva je zde vytvářena najednou!! na jedno osvícení UV lampou Osvícení se provádí přes skleněnou „masku“ Výroba probíhá ve dvou současně probíhajících cyklech

74 1.KROK osvícení polymeru přes MASKU Osvícený polymer ztvrdne Neosvícený zůstane tekutý a je odsáván vzniklý meziprostor se vyplní voskem

75 2.KROK povrch vytvořené vrstvy se ofrézuje na požadovanou výšku nanáší se další vrstva tekutého polymeru Vosk zůstane v dutinách součásti jako podpůrná konstrukce Vosk se chemicky odstranění (kyselinou citronovou)

76 Schéma zařízení SGC

77 1 – obrobek 2 –fotopolymer 3 – vytvrzování UV 4 – negativní maska 5 – odstranění přebytečného fotopolymeru 6 – fréza 7 – nanášení vrstvy vosku

78 Ballistic Particle manufacturing (BPM) nástřik kapek termoplastu princip inkoustových tiskáren kapky jsou vystřelovány z tlakové hlavy na pracovní plochu a tam vytvrzeny nanášením dalších kapek se vyrobí celá nejsou nutné podpory

79 Vývoj Rapid Prototyping materiály s lepšími mechanickými vlastnostmi plasty plněné skelnými, uhlíkovými nebo kevlarovými vlákny, keramika a kovy zvyšování přesnosti a kvality výrobků snížení ceny zařízení zrychlení a automatizace úspora materiálu i energie


Stáhnout ppt "Rapid Prototyping. Historie V 80. letech minulého století byla vyvinuta 1.metoda RP = stereolitografie Cíl - vytvoření MODELU v krátkém čase a nejvyšší."

Podobné prezentace


Reklamy Google