Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

P-těžké, np-těžké a np-úplné problémy. P-těžké problémy P-těžký problém je takový, pro který existuje algoritmus, co ho řeší v polynomiálním čase.

Podobné prezentace


Prezentace na téma: "P-těžké, np-těžké a np-úplné problémy. P-těžké problémy P-těžký problém je takový, pro který existuje algoritmus, co ho řeší v polynomiálním čase."— Transkript prezentace:

1 P-těžké, np-těžké a np-úplné problémy

2 P-těžké problémy P-těžký problém je takový, pro který existuje algoritmus, co ho řeší v polynomiálním čase

3 Np-těžké problémy Np-těžký problém (nedeterministicky polynomiální problém): existuje nedeterministický algortimus (algoritmus s nápovědou), který problém řeší v polynomiálním čase

4 Klasifikace problémů podle složitosti P-těžké Np-těžké Problémy řešitelné, ale ani nedetrministicky neřešitelné v polynomiálním čase Problémy algoritmicky neřešitelné

5 Co se dá poznat Problém patří do dané skupiny: stačí najít algoritmus daných vlastností

6 Co je velmi obtížné poznat Problém neopatří do dané skupiny: Je potřeba dokázat, že algoritmus daných vlastností neexistuje Obecně je dokázat neexistenci algoritmu algoritmicky neřešitelný problém

7 Vlastnosti np-úplných problémů Jsou np-těžké Není znám algortimus pro jejich řešení v polynomiálním čase (pravděpodobně nejsou p- těžké) Pokud by byl nalezen deterministický algoritmus pro jejich řešení v polynomiálním čase, dal by se z něj odvodit deterministický algoritmus pro řešení všech np-těžkých úloh v polynomiálním čase

8 SAT problém Pro danou výrokovou formuli zjistit, zda je splnitelná, či nikoli Například (A & B)  (  A & B) je splnitelná (pro B=TRUE, A libovolné) (A & B) & (  A & B) není splnitelná

9 SAT problém SAT problém je np-těžký Existuje jednoduchý deterministický algoritmus na řešení problému, který potřebuje 2 n operací Jestli existuje lepší algoritmus není známo

10 Modelování výpočtu Turingova stroje pomocí SAT problému Konfigurace TS: vnitřní stav a obsah pásky Instrukce TS: možný přechod z jedné konfigurace do druhé Konfigurace budu kódovat výrokovými proměnnými, možné přechody jejich konjunkcemi, různé varianty disjunkcemi Zjistit, zda stroj může přejít z konfigurace A do konfigurace B je výpočetně ekvivalentní SAT problému SAT problém je tedy np-úplný

11 Problém úplného podgrafu Je dán graf (V,E) a číslo k, existuje v grafu úplný podgraf s k-vrcholy? Pro k=3 existuje, pro k=4 ne.

12 Převod na SAT problém Výrokovou formuli převedu na konjunkci disjunkcí F = (y1  y2)  (  y2   y3)  (y3   y1). L11 (y1) L12 (y2) L21 (  y2) L22 (  y3) L31 (y3) L32 (  y1)

13 Převod na SAT problém Najdu úplný podgraf velikosti 3 L11 (y1) L12 (y2) L21 (  y2) L22 (  y3) L31 (y3) L32 (  y1)

14 Převod na SAT problém Mám dvě splnitelná ohodnocení  y1, y2,  y3 a y1,  y2, y3 L11 (y1) L12 (y2) L21 (  y2) L22 (  y3) L31 (y3) L32 (  y1)

15 Další np-úplné problémy Problém nezávislé množiny v grafu Problém barevnosti grafu TSP Problém batohu Problém dvou loupežníků Problém celočíselného lineárního programování Problém rozkladu prvočísel


Stáhnout ppt "P-těžké, np-těžké a np-úplné problémy. P-těžké problémy P-těžký problém je takový, pro který existuje algoritmus, co ho řeší v polynomiálním čase."

Podobné prezentace


Reklamy Google