Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Matematické modely v ekologii a na co jsou dobré.

Podobné prezentace


Prezentace na téma: "Matematické modely v ekologii a na co jsou dobré."— Transkript prezentace:

1 Matematické modely v ekologii a na co jsou dobré

2 Induktivní a deduktivní uvažování Indukce - mám spoustu pozorování, a v nich se snažím nalézt zákonitosti, zobecnění atd. Dedukce - mám řadu “pravd”, a hledám jejich důsledky (matematika jako nejdokonalejší deduktivní systém) Hypoteticko-deduktivní přístup k vědě (K. Popper)

3 Teorie - deduktivní systém Explikativní funkce (vysvětlit) Prediktivní funkce (predikovat, co bude za podmínek, které jsme jestě nevyzkoušeli) Matematika jako deduktivní systém Ale - každá teorie nemusí být nutně matematická

4 Systémy, které modeluji, jsou vždy nějakou abstrakcí, kterou si definuji na reálném objektu Typy modelů: * Verbání vs. formalizované (většinou matematikou) * Statistické vs. dynamické model odpovědi druhu obvykle Systém diferenčních nebo diferenciálních rovnic frekvence vlhkost

5 Když se řekne Ekologické modely většina lidí si představí dynamické matematické model, tj. soustavy diferenčních, nebo diferenciálních rovnic

6 Diferenční rovnice popisuje stav systému v diskrétních okamžicích popisuje změnu za jednotku času (jak ze stavu v čase t spočítám, jaký bude stav v čase t+1) Pozor, potřebujeme počáteční podmínky, tj. N v čase 0, ale často lze nalézt i obecné řešení.

7 velikost změny bude asi záviset na časovém intervalu (který nemusí být nutně 1), např. [bude záviset lineárně jen pro malá Δt] když bude časový interval extrémně krátký (limitně se blížící nule), dostáváme diferenciální rovnici Pozor – čím kratší je Δt, tím bude při stejné konstantě, kterou násobím N t, růst populace rychlejší – (obecně r= ln(λ)): ln(3) = 1,099 Pozor, je-li r=2, potom je lambda 7.4

8 Důležité – schopnost „přečíst“ co mi rovnice říká, tj. na základě jakých předpokladů je vytvořena. Klasika: dN/dt=rN - mi říká, že velikost změny populace je přímo úměrná velikosti populace (což si můžu představit tak, že každé individuum bakterie se rozdělí s danou konstantní pravděpodobností)

9 Řešení = nalezení funkce závislosti hodnot stavových proměnných v čase Diferenciální rovnici můžeme řešit buď analyticky, nebo numericky - vpodstatě tím, že zvolíme “strašně malý” krok, a počítáme jako diferenční rovnici. Ale ani to není přesné - populární metoda je Runge Kutta. Analytické řešení je obecné, (ale ne vžty to jde). (Vzpomeň - Integrační konstanta -> řešení obsahuje počáteční hodnoty proměnných.) Numerické řešení jde vždycky, ale je jen pro dané počáteční podmínky.

10 Analytické řešení dN/dt = rN - rovnice v diferenciální podobě Řešení Platí pro jakékoliv hodnoty parametrů a počátečních podmínek

11 Modely analyticky řešitelné vs. simulační Analyticky řešitelné - dostávám úplné řešení, ale jsem omezen ve složitosti rovnic Matematičtí ekologové rádi analyzují různé vlastnosti systému, jako rovnovážné body a jejich vlastnosti (typy stability), a řadu jejich dalších charakteristik Simulační - mohu si vymyslet rovnice, jak chci složité, ale dostávám řešení pouze numerické a pro dané počáteční podmínky

12 Kdy diferenční a kdy diferenciální rovnice? V ekologii je mnoho procesů, které se dějí s určitou periodicitou; jeden rok, jeden den. Pak je pro modelování na dlohých časových úsecích přirozené užít diferenční rovnici s kroken jeden rok resp. jeden den (samozřejmě, pokud nechceme explicitně modelovat sezónní nebo cirkadiánní dynamiku). Jinak je rozhodnutí často “pragmatické” (třeba, co umím spočítat).

13 Vlastnosti modelů Věrnost, přesnost, obecnost Věrnost - jak dobře vystihuje mechanismy Přesnost - jak dobře predikuje vývoj v čase Obecnost - kolika systémů se týká Většinou jsou rozumně splněny jen dva ze tří požadavků

14 Modely teoretické ekologie - hlavně obecné, často i věrné, přesnost není prvořadá Modely aplikované ekologie - důležitá přesnost, potom i věrnost

15 Modely deterministické vs. stochastické Každý reálný objekt podléhá stochastickým (tj. námi neměřeným) vlivům. Při modelování se rozhodujeme, jak je pro nás stochasticita důležitá, např.

16 Sleduji, zda (např. za určitých stresových podmínek) vyhyne populace, když má každé individuum 50% pravděpodobnost přežití 1. Populace ohroženého druhu, čítající 10 individuí (stochasticitu asi musím vzít v úvahu, šance, že vyhyne je 0,5 10 = , což je sice málo, ale asi bych to neměl ignorovat – je rozumné použít nějaký stochastický model) 2. Populace druhu s individui. Šance, že vyhyne, je 0, =0, …... – asi si zcela vystačím s modelem deterministickým

17 Modelování: populační růst (už jsme probírali)

18 Rychlost růstu nezávisí na hustotě - Exponenciální Diferenciální rovnice dá se přepsat což mi říká, že per capita velikost změny je konstantní

19 Discrete form Diferenční rovnice To neznamená, že by se populační hustoty měnily skokově, ale mezi červenými body o velikosti populace nic nevím.

20 Logistic growth - density dependent Pozor – i logistický růst můžu modelovat pomocí difwerenční rovnice, dělá se to málo, protože je to výpočetně složitější – tedy, pokud nepoužiju simulaci

21 Kladná zpětná vazba Záporná zpětná vazba Jen záporná zpětná vazba dokáže stabilizovat systém

22 Co z té rovnice mohu vyčíst

23

24 I takto jednoduchou rovnici mohu použít pro praktické aplikace, např. určení optimálního harvestingu (harvesting je skilzeň, ale v angličtině to slovo znamená i „sklizeň“ ryb)

25

26 Optimální “harvesting” (sklizeň)

27 Kladná zpětná vazba Záporná zpětná vazba Jen záporná zpětná vazba dokáže stabilizovat systém Záporná vazba se zpožděním často systém „rozkmitá“

28 Zpoždění (záporná zpětná vazba se zpožděním) způsobuje oscilace - nedřív tlumené zpoždění

29 Čím větší zpoždění, tím menší tlumení

30 Nakonec už oscilace netlumené

31 Diskrétní logistická rovnice se zvětšující se rychlostí růstu (krok je jednotka času, takže čím větší rychlost, tím de facto větší zpoždění)

32

33 Deterministický chaos

34 Strukturované populace - maticové modely - parametry se dají odhadnout v terénu - často se užívají pro management věková struktura vs. velikostní struktura Individua nejsou stejná

35

36 Lotka - Volterra Model kompetujících si druhů jako příklad analýzy teoretického modelu

37 Lotka-Volterra kompetiční model and Výsledek analýzy: Koexistence se stabilní rovnováhou nastane, když: Co z formulace modelu vidíme Model není příliš mechanistický – vidíme, že druh snižuje rychlost růstu kompetitora, ale není zřejmé proč To už je ekologicky interpretovatelný výsledek: je to tehdy, když je mezidruhová kompetice slabší než vnitrodruhová

38 Systém směřuje ke koexistenci se stabilní rovnováhou (stab. equilibrium) Příklad numerického řešení, vynesený jako průběh dvou stavových proměnných v čase

39 Systém směřuje ke kompetičnímu vyloučení druhu 1 – příklad vynesení ve stavovém prostoru

40 Individual based models – modely založené na chování individuí Každé individuum je popsáno stavovou proměnnou (nebo více proměnnými) V každém kroku, růst individua závisí na jeho velikosti, a na kompetici Podobně, přežití je závislé na velikosti individua a kompetičním tlaku – buď deterministicky, nebo vypočtu jeho pravděpodobnost

41 STOCHASTICITA Pravděpodobnost přežití – a co s ní Monte Carlo simulace (v podstatě systém „Pán jeskyně a kostka“) V podobných případech dopadne každý běh modelu (trochu) jinak – musím nechat proběhnout model mnohokrát (třeba tisíckrát) a tak zjistím očekávanou variabilitu výsledku

42

43

44 Využití pro „management“ Např. bych mohl „prořezat“ nálet v různých časových okamžicích, a tím zjistit, kdy a jak prořezat les, abych dosáhl největší produkce použitelné dřevní hmoty

45 Velké ekosystémové modely velmi jednoduchý příklad

46 Primární producenti [gC] Herbivoři [gC] Detritus [gC] A TZ Zdroj a propad CO 2 v atmosféře Fotosyntéza Mikrobní rozkl. [gC] Dýchání herbivorů Fotosyntéza = P.f´(T,Z) Dýchání herbivorů=k. H

47 Bilanční rovnice (pro každou stavovou proměnnou jedna)  P/  t = fotosyntéza - dýchání - co je sežráno - co odumřelo z P  H/  t = co je sežráno - co je prodýcháno - co odumřelo z H  D/  t = co odumřelo z P + co odumřelo z H  M/  t = co mikroorganismy sežraly z detritu - co prodýchaly Aktivita mikrobů jako pomocná proměnná vstupuje do několika procesů (není nutná [t.j.- můžeme jednotlivé výpočty provádět bez ní], ale ulehčuje výpočty) T, Z - teplota, záření - řídící proměnné - tj. proměnné v modelu systémem neovlivnitelné [ve skutečnosti to může být jinak] Scenario - naše představy, jak se tyto budou vyvíjet Modeluji toky uhlíku (v podstatě toky energie)

48 Validace a verifikace Validace - jak je model schopen reprodukovat data, na jejich základě byl vytvořen Verifikace - jak je model schopen predikovat nezávislá data

49 Další modely - mohou být prostorově explicitní (např. pohyb vody krajinou) Při současném vybavení počítačů mohou být značně složité Otázka je, zda je to vždy výhoda (není), resp. kdy je to výhoda Stránka ekologických modelů - co všechno se dá modelovat a modeluje:

50 Model jako deduktivní nástroj struktura modelovaného systému hodnoty parametrů Průběh stavových proměnných v čase Pomocí dvou můžeme odhadnout (testovat) třetí

51 Na co modely používáme Praktická ekologie (pokud už je model rozumně verifikovaný) - vyzkoušet si managemet (a to i v podmínkách, které jsme zatím empiricky netestovali) - pozor na různá nebezpečí - Experimenty, které nechceme/nemůžeme provádět v realitě Máme-li strukturu modelovaného systému a hodnoty parametrů, můžeme predikovat změny hodnot v čase (nejběžnější užití v praktické ekologii - můžeme si i “vyzkoušet” management). Dobrý simulační model s grafickým výstupen je vlastně počítačová hra.

52 Na co modely používáme Jako deduktivní nástroj v rámci vědeckého poznání (v principu na testování hypotéz) Máme-li všechny tři složky (tj. strukturu, hodnoty parametrů, reálný průběh v čase), můžeme testovat shodu predikcí modelu s reálným chováním - nejčastěji tím testujeme věrohodnost struktury modelu (má různá úskalí). Tj. mám model, který mi predikuje, jak se systém bude chovat. Systém se ve skutečnosti chová úplně jinak – z toho usoudím, že hypotézy, na kterých je model postaven, nejsou správné. (Ale pozor – je zde ještě nebezpečí nesprávného „překladu“ hypotéz do matematických formulí.)

53 Na co modely používáme Máme-li strukturu modelovaného systému a změny hodnot v čase, můžeme odhadovat hodnoty parametrů

54 Složité modely Propojení s GIS Možnost modelovat změny v prostoru, změny v celé krajině Některé modely jdou až na celoplanetární úroveň Některé modely zahrnují globální dynamiku, a ekosystémy tvoří jen jeden subsystém

55 NASA FED (Forest Ecosystem Dynamic) model - konceptuální diagram Všimněte si hierarchické struktury (např. Vegetation Dynamics by mohl být celý model) Systém, subsystémy etc. (viz Teorie systémů, Ludwig von Bertalanffy ( ) Ludwig von Bertalanffy ( )

56 Globální modely Můžu (s modelem) provádět experimenty v globálním měřítku, v libovolném počtu opakování Ale verifikace chybí

57 Pamatuj Každý model vyvíjím za určitým účelem Každý model je zjednodušením skutečnosti Kvalita každého modelu závisí na kvalitě vstupní informace “GIGO” - Garbage In Garbage Out


Stáhnout ppt "Matematické modely v ekologii a na co jsou dobré."

Podobné prezentace


Reklamy Google