Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0349 Šablona III/2VY_32_INOVACE_773.

Podobné prezentace


Prezentace na téma: "Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0349 Šablona III/2VY_32_INOVACE_773."— Transkript prezentace:

1 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_773

2 Jméno autora:Danuše Černínová Třída/ročník:1. a 4. Datum vytvoření: Vzdělávací oblast: Kvadratická rovnice s parametrem Tematická oblast: Rovnice Předmět:Matematika Výstižný popis způsobu využití, případně metodické pokyny: Prezentace je určena žákům 1. ročníku 4-letého a 5. ročníku 8-letého gymnázia a maturitním ročníkům jako podpůrný materiál ke studiu. Klíčová slova: parametr Druh učebního materiálu:prezentace

3 Kvadratická rovnice s parametrem, řešená v R, rovnice obsahuje x 2. Řešíme stejně jako kvadratickou rovnici bez parametru. Úplná diskuze: a)Zjišťujeme, zda daná rovnice může být lineární a pokud ano, pro které hodnoty parametru to nastane a jaký bude kořen. b) Zjišťujeme, kdy bude mít rovnice dva různé kořeny, pak D>0. c) Kdy bude mít rovnice jeden dvojnásobný kořen, pak D = 0. d) Kdy daná rovnice nebude mít v R řešení, nebo řešením budou dvě komplexně sdružená čísla.

4 Řešte v R rovnici s parametrem m a) lineární: m = 1 -4x = 1 b) D>0 c) D= 0 d) D< 0

5 Výsledky diskuse řešení Hodnoty parametru a) b) c) d) Množina K kořenů rovnice a) b) c) d)

6 Kvadratická rovnice s parametrem Speciální případy: pro kterou hodnotu parametru m e) kdy bude mít kv. rovnice jeden kořen roven nule, f) kdy bude mít oba kořeny kladné, g) kdy bude jeden kořen kladný a druhý záporný

7 Návod, řešení e) Kvadratická rovnice ax 2 +bx +c= 0 bude mít jeden kořen roven nule, jestliže c = 0, pak m= 2, rovnice má tvar x 2 - 6x= 0, x 1 = 0, x 2 = 6. f) Vietovy vztahy, oba kořeny kladné pak, p 0 a D > 0. Oba kořeny jsou kladné pokud g) Podmínka bude splněna pokud q 0 odtud pro

8 Samostatná práce 1)Určete, pro které hodnoty parametru má rovnice aspoň jeden reálný kořen. 2) Pro které hodnoty parametru bude jeden kořen rovnice třikrát větší než druhý. 3)Určete, pro které hodnoty reálného parametru k nemá rovnice v R řešení.

9 Výsledky Hodnoty parametru 1)k = 0; lineární rovnice kvadratická rovnice 2) k 1 = -3, k 2 = 1 3) Množina K kořenů rovnice 1) 2) k 1 = - 3 k 2 = 1 3)

10 Zdroje: FUCHS, Eduard a Josef KUBÁT. Standardy a testové úlohy z matematiky pro čtyřletá gymnázia. 1. vyd. Praha: Prometheus, 1998, 147 s. ISBN HALOUZKA, Alois. Přehled učiva k maturitní zkoušce z matematiky. 1. vyd. Praha: Fortuna, 2002, 240 s. ISBN VOCELKA, Jindřich. Maturujeme jinak. 1. vyd. Praha: Prometheus, 2001, 62 s. ISBN X. KOLISKO, Pavel. Rovnice, nerovnice a průběh funkcí: sbírka řešených příkladů pro střední školy s programem pro zobrazování funkcí. 1. vyd. Praha: Prometheus, 2011, 243 s. ISBN [online]. [cit ]. Dostupné z:


Stáhnout ppt "Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0349 Šablona III/2VY_32_INOVACE_773."

Podobné prezentace


Reklamy Google