Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Regulace III Střední odborná škola Otrokovice www.zlinskedumy.cz Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je ing. František Kocián.

Podobné prezentace


Prezentace na téma: "Regulace III Střední odborná škola Otrokovice www.zlinskedumy.cz Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je ing. František Kocián."— Transkript prezentace:

1 Regulace III Střední odborná škola Otrokovice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je ing. František Kocián Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

2 Charakteristika DUM Název školy a adresaStřední odborná škola Otrokovice, tř. T. Bati 1266, Otrokovice Číslo projektuCZ.1.07/1.5.00/ /7 AutorIng. František Kocián Označení DUMVY_32_INOVACE_SOSOTR-PE-Au1-EL-3/5 Název DUM Regulace III Stupeň a typ vzděláváníStředoškolské vzdělávání Kód oboru RVP26-41-L/506 Obor vzděláváníProvozní elektrotechnika Vyučovací předmětAutomatizace Druh učebního materiáluVýukový materiál Cílová skupinaŽák, 18 – 19 let Anotace Výukový materiál je určený k frontální výuce učitelem, případně jako materiál pro samostudium, nutno doplnit výkladem, náplň: Spojité lineární řízení, druhy regulace, Laplaceova transformace, vlastnosti regulačních členů, charakteristika impulsní a přechodová funkce, frekvenční přenos, dopravní zpoždění, regulační pochod a jeho stabilita Vybavení, pomůckyDataprojektor Klíčová slova spojité lineární řízení, Laplaceova transformace, impulsní funkce, přechodová funkce, frekvenční přenos, dopravní zpoždění, rregulační pochod, stabilita obvodu Datum

3 Náplň výuky Spojité lineární řízení Druhy regulace Laplaceova transformace Statické a dynamické vlastnosti regulačních členů Impulsní funkce a charakteristika Přechodová funkce a charakteristika Frekvenční přenos Dopravní zpoždění Regulační pochod a jeho stabilita Regulace III

4 Spojité lineární řízení Je tam, kde jak akční zásah je spojitě nastavován, tak i údaje o řízeném systému jsou měřeny jako veličiny spojitě proměnné v čase. Spojitý řídicí systém vytváří (na rozdíl od diskrétního systému) nepřetržitou vazbu mezi vstupy a výstupy. Všechny veličiny spojitého systému jsou spojitě proměnné v čase, žádná z nich není ani dvouhodnotová ani diskrétní. Regulace se uskutečňuje v regulačním systému zvaném regulační obvod. V regulačním obvodu se výrazně rýsují dvě části: regulátor neboli řídicí systém a regulovaná soustava, neboli řízený systém. Regulátor je zařízení, které uskutečňuje regulaci Obr. 1: Nejjednodužší regulační obvod

5 Druhy regulace Podle závislosti regulované veličiny rozeznáváme několik druhů regulace. Na konstantní hodnotu Při ní se regulovaná veličina udržuje na konstantní hodnotě – zde je w = konst i y = konst. Je to např. regulace teploty v místnostech, otáček strojů anebo již vzpomenutá a uváděná regulace výšky hladiny. Programová regulace Je to taková regulace, kde požadujeme, aby se regulovaná veličina měnila v předepsaných velikostech v předepsané časové závislosti – regulovaná veličina je funkcí času w = f(t) i y = f(t). Příkladem je regulace teploty v pecích, kde se teplota musí podle časového programu měnit Vlečná regulace Regulace, při níž se regulovaná veličina mění v závislosti na jiné vnější fyzikální veličině. Hodnota regulované veličiny má změny této vnější veličiny rychle a přesně sledovat. Matematicky vyjádřeno w = f(A), y = f(A), kde A je právě onou vnější veličinou. Příkladem je dávkování chemikálie do vody, kdy požadujeme změnu množství dávkované chemikálie v závislosti od okamžitého průtočného množství vody. Zvláštním případem vlečné regulace jsou servomechanismy.

6 Laplaceova transformace Přímá a zpětná transformace Laplaceova transformace je matematický aparát, který umožňuje poměrně snadno řešit úlohy spojité lineární regulace. Zavedl ji v roce 1820 francouzský matematik Laplace a umožnila mu výhodně řešit diferenciální rovnice. Jak se brzy dozvíme, transformací diferenciální rovnice dostaneme algebraickou rovnici. Jestliže tuto vyřešíme a provedeme zpětnou transformaci řešení, získáme hledané řešení původní rovnice. Význam použití Laplaceovy transformace v teorii regulace je však hlubší. S její pomocí můžeme totiž velmi jednoduše popsat lineární spojité regulační systémy místo diferenciálních rovnic tzv.přenosy. U nich je zvláště výhodné, že z přenosů jednotlivých částí můžeme velmi jednoduše vypočítat přenos celého systému nebo obvodu.

7 Laplaceova transformace Pojem transformace funkce znamená, že každé funkci f(t) z jedné množiny proměnné t přiřadíme funkci F(s) z množiny funkcí komplexní proměnné s – obr. 2. (Všimněme si podobnosti této definice s definicí funkce y = f(x), která říká, že funkce je přiřazení, které k nezávisle proměnné x z jedné množiny, přiřazuje závisle proměnnou y z jiné množiny). U pojmu transformace přiřadíme tzv. originálu (zde funkci času t) určitým předpisem tzv. obraz (je funkcí komplexní proměnné s). Transformace originál →obraz je přímá transformace. Existuje samozřejmě k ní zpětná transformace, tedy transformace obraz→originál, která k obrazu F(s) přiřazuje opět originál f(t). Obr. 2: Přímá a zpětná transformace

8 Laplaceova transformace Z možných transformací je v regulační technice pro spojitou regulaci používána právě transformace Laplaceova, která je definována vztahem. Laplaceova transformace L přiřazuje funkci f(t) pro čas t≥0 funkci F(s), což symbolicky zapisujeme vztahem Obr. 3: Hlavní věty transformace

9 Statické a dynamické vlastnosti regulačních členů Vlastnosti regulačních členů můžeme posuzovat buď v ustáleném stavu a pak mluvíme o statických vlastnostech nebo při změnách vstupních i výstupních veličin a to pak mluvíme o dynamických vlastnostech regulačních členů nebo systémů. Statické vlastnosti regulačních členů se nejčastěji vyjadřují statickou charakteristikou, což je závislost mezi výstupní veličinou v ustáleném stavu a vstupní veličinou v ustáleném stavu). U lineárního členu je statická charakteristika přímková, lineární. Jakmile statická charakteristika není přímka, jedná se o nelineární člen. Obr. 4: Statická charakteristika

10 Statické a dynamické vlastnosti regulačních členů Vzhledem k tomu, že v regulaci nám nejde o ustálený stav, ale o průběh přechodného děje, budeme se v dalším zajímat o dynamické vlastnosti regulačních členů a regulačních systémů. Dynamické vlastnosti systému lze popsat v podstatě dvěma různými, navzájem zcela odlišnými způsoby dynamické vlastnosti systému charakterizuje: Vnější popis systému vyjadřuje dynamické vlastnosti systému pouze pomocí vztahu mezi výstupní a vstupní veličinou Vnitřní popis systému pracuje s pojmem stav systému. Je to vyjádření dynamických vlastností systému vztahy mezi vstupem, výstupem a stavem systému. Ze zkušenosti je přece známo, že výstupní veličina obecného systému nezávisí pouze na vstupní veličině, ale také na počátečních podmínkách systému na začátku děje.

11 Statické a dynamické vlastnosti regulačních členů Způsoby vnějšího popisu – závislosti mezi vstupem a výstupem systému – jsou: diferenciální rovnice systému přenos impulsní funkce a charakteristika přechodová funkce a charakteristika frekvenční přenos frekvenční charakteristiky

12 Impulsní funkce a charakteristika Impulsní funkce – odezva systému na jednotkový (Diracův) impuls δ(t) na vstupu systému a značíme ji g(t) – obr. 5. Její graf je impulsní charakteristika. Jednotkový (Diracův) impuls δ(t) je „funkce“, která se jeví jako nekonečně krátký impuls o nekonečně velké amplitudě, jehož plocha je rovna jedné a Laplaceův obraz se rovněž rovná jedné. V praxi je tedy možné ho realizovat impulsy konečně malé šířky a konečně velké amplitudy. Experimentální zjišťování impulsní charakteristiky se více používá u elektrických prvků než u mechanických. Obr. 5: Impulzní charakteristika

13 Přechodová funkce a charakteristika Přechodová funkce – odezva systému na jednotkový skok η(t) na vstupu a značíme ji h(t) – obr. Její graf je přechodová charakteristika. Jednotkový skok je funkce, která do času t = 0 má nulovou hodnotu a v tomto čase skočí její hodnota na jednotku, kterou pak stále udržuje. Obr. 6: Impulzní charakteristika

14 Přechodová funkce a charakteristika Rozdělení regulačních členů podle přechodové charakteristiky a přenosu Přechodové charakteristiky regulačních členů se pro čas t→∞ ustálí na určité konkrétní hodnotě, kterou jsme na obr. označili h(∞) a kterou můžeme určit podle věty o konečné hodnotě funkce Obr. 8: Regulační členy a jejich přenosyObr. 7: Přechodová charakteristika

15 Přechodová funkce a charakteristika Rozdělení regulačních členů V tab. jsou uvedeny jednotlivé regulační členy s odpovídajícími přenosy. Tím jsme se seznámili s používanou terminologií (místo „se zpožděním 1. řádu“, „se zpožděním 2. řádu“… je možno také používat „se setrvačností 1. řádu“, „se setrvačností 2. řádu“…). Regulační členy a jejich přenosy

16 Frekvenční přenos Frekvenční přenos Frekvenční přenos získáme tak, že na vstup systému přivedeme harmonický signál. Typickým harmonickým signálem je sinusový průběh. Na výstupu systému dostaneme podle obr. (po odeznění přechodového jevu) opět sinusový signál ovšem s jinou amplitudou, stejnou úhlovou frekvencí a fázově proti vstupnímu signálu posunutý Y(t) = y o sin(ωt + Φ) Obr. 9: frekvenční přenos

17 Dopravní zpoždění Provedeme změnu na vstupu a na výstupu není žádná odezva. Teprve po uplynutí určité doby – tzv. dopravního zpoždění T D - se začne měnit výstupní veličina. Tento jev se nejčastěji vyskytuje u některých regulovaných soustav, kde se vyskytuje doprava určitou rychlostí a po určité dráze. Příklad regulované soustavy s dopravním zpožděním máme na obr. Jedná se o dávkování chemikálie do užitkové vody. Akční veličinou u (vstupní veličina soustavy) je otevření dávkovacího ventilu. Když dojde ke změně akční veličiny u, nebude se regulovaná veličina y (koncentrace chemikálie v místě měření) měnit hned, ale až za dobu, kdy voda proteče vzdálenost L ke snímači a to je opět doba dopravního zpoždění T D. Obr. 10: Regulovaná soustava s dopravním zpožděním

18 Dopravní zpoždění Z uvedeného příkladu je patrno, že dopravní zpoždění T D u regulovaných soustav je zpožděná reakce výstupní veličiny (regulované veličiny y) na změnu vstupní veličiny (akční veličina u). Další změny výstupní veličiny jsou už dány jejím charakterem. Přechodová charakteristika soustavy se zpožděním prvního řádu typická pro soustavy s dopravním zpožděním je na obr. Z podstaty dopravního zpoždění plyne, že má negativní vliv na ustálení regulačního pochodu (v dalším budeme říkat na stabilitu. Obr. 11: Přechodová charakteristika s dopravním zpožděním

19 Regulační pochod a jeho stabilita Regulační pochody řízené spojitým regulátorem lze rozdělit na stabilní (vhodné pro regulační účely) a nestabilní, které jsou pro regulační účely nepoužitelné, protože jednak nesplňují požadavky kladené na udržování regulované veličiny na žádané hodnotě a navíc vedou k rychlému opotřebování zařízení. Vznik nestability regulačního pochodu může zavinit jak regulovaná soustava, tak regulátor. a)periodický stabilní regulační pochod b)aperiodický stabilní regulační pochod c)periodický regulační pochod na hranici stability d)periodický nestabilní regulační pochod e)aperiodický nestabilní regulační pochod Obr. 12: Přehled typických regulačních pochodů

20 Regulační pochod a jeho stabilita Nyquistovo kritérium stability Nyquistovo kritérium se používá nejčastěji, protože má největší praktický význam. Hodí se i pro obvody s dopravním zpožděním a umožňuje zjistit stabilitu na základě měřených frekvenčních charakteristik otevřené smyčky. Nazývá se proto frekvenční kritérium. Jediná podmínka pro možnost experimentálního ověření, totiž že obvod s otevřenou regulační smyčkou musí být stabilní, je ve většině případů splněna. Regulační obvod je stabilní, jestliže kritický bod [-1, 0] leží vlevo od frekvenční charakteristiky rozpojeného obvodu G 0 (jω) pro frekvence ω od 0 do ∞. Obr. 13: Průběh charakteristik

21 Kontrolní otázky: 1.Co je vlečná regulace? a)Proporcionální neboli „P“ regulátor b)Regulace, kde požadujeme, aby se regulovaná veličina měnila v předepsaných velikostech v předepsané časové závislosti c)Regulace, při níž se regulovaná veličina mění v závislosti na jiné vnější fyzikální veličině. 2.Co je impulzní funkce? a)Odezva systému na jednotkový (Diracův) impuls δ(t) na vstupu systému a značíme ji g(t). b)Působí zmenšování regulační odchylky. c)Odezva systému na jednotkový skok η(t) 3.Co to je dopravní zpoždění? a)Provedeme změnu na vstupu a na výstupu není hned žádná odezva b)Akční veličina úměrná regulační odchylce c)Mezní stav, při kterém y hom (t) kmitá kmity o konstantní amplitudě

22 Kontrolní otázky – řešení 1.Co je vlečná regulace? a)Proporcionální neboli „P“ regulátor b)Regulace, kde požadujeme, aby se regulovaná veličina měnila v předepsaných velikostech v předepsané časové závislosti c)Regulace, při níž se regulovaná veličina mění v závislosti na jiné vnější fyzikální veličině. 2.Co je impulzní funkce? a)Odezva systému na jednotkový (Diracův) impuls δ(t) na vstupu systému a značíme ji g(t). b)Působí zmenšování regulační odchylky. c)Odezva systému na jednotkový skok η(t) 3.Co to je dopravní zpoždění? a)Provedeme změnu na vstupu a na výstupu není hned žádná odezva b)Akční veličina úměrná regulační odchylce c)Mezní stav, při kterém y hom (t) kmitá kmity o konstantní amplitudě

23 Seznam obrázků: Obr. 1: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 2: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 3: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 4: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 5: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 6: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 7: SVARC. Základy automatizace [online]. [vid ]. Dostupný z:

24 Seznam obrázků: Obr. 8 : SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 9: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 10: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 11: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 12: SVARC. Základy automatizace [online]. [vid ]. Dostupný z: Obr. 13: SVARC. Základy automatizace [online]. [vid ]. Dostupný z:

25 Seznam použité literatury: [1] Automatizace [online]. [cit ]. Dostupný z: [2] SVARC. Základy automatizace [online]. [cit ]. Dostupný z: [3] NĚMEC, Z., Prostředky automatického řízení (Elektrické) Skripta VUT Brno 2002 [4] Automatizace,regulační technika [online]. [cit ]. Dostupný z: pojmy.pdf pojmy.pdf

26 Děkuji za pozornost


Stáhnout ppt "Regulace III Střední odborná škola Otrokovice www.zlinskedumy.cz Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je ing. František Kocián."

Podobné prezentace


Reklamy Google