Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Statistika Střední hodnoty 1.

Podobné prezentace


Prezentace na téma: "Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Statistika Střední hodnoty 1."— Transkript prezentace:

1 Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Statistika Střední hodnoty 1

2 Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu VY_42_INOVACE_PoP_MA_3OA_32 Autor Petr Polách Tematický celek Matematika – odpovědný přístup k přípravě na hodinu Ročník 3. Datum tvorby Anotace Prezentace slouží jako podpora při výuce statistiky pro obchodní akademie Metodický pokyn Prezentace slouží jako podpora při výuce s použitím projektoru nebo programu typu Master Eye. V materiálu jsou zadání příkladů, které mají studenti vypracovat za domácí úlohu. Tím je pěstován zodpovědný přístup k přípravě na hodinu. 2

3 3 Střední hodnoty – umožňují jedním údajem charakterizovat určitou vlastnost celého stat. souboru, – umožňují srovnání více souborů.

4 4 PrůměryOstatní stř. hodnoty - aritmetický- modus - geometrický - medián - chronologický- maximum - harmonický- minimum -kvadratický Průměry - velikost závisí na všech zjištěných údajích Ostatní stř. hodnoty závisí pouze na určitých údajích Dělení středních hodnot

5 5 Aritmetický průměr Prostý aritmetický průměr X 1, X 2,...X n jsou jednotlivé zjištěné hodnoty n je počet zjištěných hodnot je součet všech zjištěných hodnot Prostý aritm. průměr používáme při menším počtu údajů, jejichž číselná hodnota se vícekrát neopakuje. Př. Výpočet průměrného prospěchu studentů třídy ze statistiky.

6 6 Aritmetický průměr Vážený aritmetický průměr kde i = 1, 2,..., k, kde k je počet hodnot (obměn) znaku. Vážený aritm. průměr používáme při větším počtu zpracovávaných údajů, jejichž hodnota se častěji opakuje.

7 7 Aritmetický průměr Vážený aritmetický průměr – Příklad: Na jednoho pracovníka připadá 3942/21 =187,7 hodin.

8 8 Aritmetický průměr Aritmetický průměr z intervalového rozdělení četností Použijeme u rozsáhlých souborů, zvláště pokud se hodnoty příliš neopakují, nebo pokud přesné hodnoty neznáme – známe pouze jejich zastoupení v jednotlivých intervalech – četnosti Pro roztřídění údajů vytvoříme intervaly a zjistíme počty případů do nich spadajících – jejich četnosti. Stanovíme středy intervalů a dále postupujeme jako u váženého aritmetického průměru. U krajních (otevřených) intervalů nelze určit jejich střed. Jako střed použijeme aritmetický průměr hodnot, které do krajního intervalu patří. Aritmetický průměr z intervalového rozdělení četností (výpočet ze středů intervalů) není přesný jako výpočet z původních údajů. Přesnost závisí na zvolené velikosti intervalů – jak?.

9 9 Aritmetický průměr Aritmetický průměr z intervalového rozdělení četností Příklad:

10 10 Ostatní střední hodnoty Modus (X se stříškou) udává hodnotu, která se v souboru vyskytuje nejčastěji (např. nejprodávanější číslo bot, nejčastější známku). Slovo pochází z francouzského mode – móda (hodnota, která je v módě) Modální interval při intervalovém dělení četností interval obsahující největší počet hodnot. Bimodální soubor

11 11 Ostatní střední hodnoty Modus Př. 1: Pri 13 měřeních doby opracování součástek byly naměřeny postupně tyto časové údaje v minutách: 3,5; 3,6; 3,4; 3,7; 3,4; 3,6; 3,5; 3,7; 3,6; 3,5; 3,5; 3,4; 3,5 Určete modus. Př. 2: Určete modální interval u příkladu o plnění výkonových norem. ( ,9)

12 12 Ostatní střední hodnoty - modus V tabulce je počet objednaných velikostí bot pro vojáky a)Určete modus souboru b)Určete pro kolik vojáků byly boty objednány. velikostpočet

13 13 Ostatní střední hodnoty Medián (X s vlnovkou) prostřední člen uspořádaného souboru. (ten, který dělí soubor na dvě poloviny. Pořadí mediánu lze zjistit podle vzorce (kde n je počet prvků). V případě sudého počtu prvků v souboru se medián vypočítá jako průměr dvou prostředních členů.

14 14 Střední hodnoty Př.1 : Ve skupině dělníků byl zjištěn tento počet vyrobených výrobků: 160, 185, 190, 180, 165, 175, 185, 165, 165, 170, 175, 165, 175, 160, 165. Určete průměr na jednoho dělníka, modus a medián tohoto souboru. Vyrobených ksDělníků

15 15 Střední hodnoty Př. 2: Akciová společnost má následující strukturu vlastníků akcií: Určete celkový počet akcií, průměrný počet akcií na jednoho akcionáře, modus a medián souboru Akcionářů poAkcií

16 ZDROJE BURDA, Z., STRACHOTA, F., Statistika pro obchodní akademie. 2. vyd. Fortuna s. ISBN Použité zdroje 16


Stáhnout ppt "Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Statistika Střední hodnoty 1."

Podobné prezentace


Reklamy Google